Summary: | The difference of die filling, which can be characterized by the free surface flow behavior, has a strong influence on the quality of casting components. In the case of cast aluminum alloy wheels, an undesired filling pattern with excessive turbulence can cause portions of the surface oxide film to be entrained within the bulk liquid resulting in defects such as cosmetic paint-pops, hot tears, porosity and rim-leaks.
To investigate the influence of die filling on defect formation in low-pressure die-cast aluminum wheels, a water analogue physical model was built, instrumented and tested to simulate the free surface behavior during die filling of a low-pressure die-cast (LPDC) wheel. The physical model contains a transparent planar die section which was manufactured out of the geometry of a production die, and an automatic pressure control system that achieves liquid feeding conditions similar to the industrial process. A set of die filling tests with different venting conditions was carried out to explore the role of venting on the free surface behavior of water and to produce data for validation of a computational model. The computational model was developed, based on the commercial computational fluid dynamics code ANSYS CFX, for the purposes of predicting the flow conditions during die filling, providing qualitative and quantitative flow information that are otherwise not possible to obtain through experimental measurement, and identifying key features that influences the flow during die filling at a lower cost of time and labor.
Comparison between the experimental and numerical data has shown that the computational model was able to qualitatively reproduce the flow behavior observed in the water model in the conditions tested. Both the experimental and the model results indicate that the entrainment of surface oxide films and air bubbles could occur at the outboard rim flange during the filling of the flange, below the free surface of the returning waves in the spoke and at the junction of the hub and the spoke during the filling of the hub. Venting conditions have been proved crucial and the importance of vent design in commercial die design was highlighted. === Applied Science, Faculty of === Materials Engineering, Department of === Graduate
|