Genome-wide analysis of endocytic recycling in S. cerevisiae

The process of endocytic recycling, in which cell surface proteins are internalized and re-delivered to the plasma membrane, is essential in all eukaryotes for maintaining plasma membrane composition and regulating the surface levels of signaling receptors. The applicability of Saccharomyces cerevi...

Full description

Bibliographic Details
Main Author: Burston, Helen Elizabeth
Language:English
Published: University of British Columbia 2011
Online Access:http://hdl.handle.net/2429/36387
id ndltd-UBC-oai-circle.library.ubc.ca-2429-36387
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-363872018-01-05T17:25:11Z Genome-wide analysis of endocytic recycling in S. cerevisiae Burston, Helen Elizabeth The process of endocytic recycling, in which cell surface proteins are internalized and re-delivered to the plasma membrane, is essential in all eukaryotes for maintaining plasma membrane composition and regulating the surface levels of signaling receptors. The applicability of Saccharomyces cerevisiae as a model to study endocytic recycling is a subject of debate, as there appears to be critical differences between yeast and mammalian cells. For example, while clathrin and its adaptors are critical for uptake in mammals, they do not seem to be essential in yeast. Endocytic recycling has not been comprehensively studied on a genetic level in yeast, and only limited cargo have been considered, making it difficult to accurately assess the similarity between the two systems. Furthermore, the transport of SNARE proteins is poorly understood, but appears to involve specialized mechanisms. This study uses a genome-wide screening approach to systematically and quantitatively identify genes required for the endocytic recycling of the yeast SNARE protein Snc1, homologous to the mammalian VAMP2/synaptobrevin. Endocytic defects for mutants of many yeast homologs of mammalian endocytosis genes were identified, for the first time. Significantly, a cargo-selective and partially-redundant role for clathrin and its adaptors yAP1801 and yAP1802 was identified. The lipid phosphatase Inp52 was found to mediate AP180 release from endocytic vesicles. Additionally, the previously uncharacterized protein Ldb17, homologous to the mammalian endocytic protein SPIN90, was identified as a new component of the endocytic machinery, and regulates both coat and actin dynamics at endocytic sites. Factors regulating Snc1 recycling were also identified, including the variant clathrin adaptor AP-1R. This is the first reported function for this complex. The previously uncharacterized protein Ima1 was found to be a putative enzyme that specifically binds to AP-1R, and may have activity related to AP-1R function. Overall, this study demonstrates that endocytic recycling in yeast and mammals is more similar than previously appreciated, and identifies new factors in this process. Furthermore, it raises awareness of the degree of cargo-selectivity underlying this pathway, and demonstrates quantitative methods that can be further applied to future studies in both systems. Medicine, Faculty of Medical Genetics, Department of Graduate 2011-07-29T17:03:54Z 2011-07-29T17:03:54Z 2011 2011-11 Text Thesis/Dissertation http://hdl.handle.net/2429/36387 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description The process of endocytic recycling, in which cell surface proteins are internalized and re-delivered to the plasma membrane, is essential in all eukaryotes for maintaining plasma membrane composition and regulating the surface levels of signaling receptors. The applicability of Saccharomyces cerevisiae as a model to study endocytic recycling is a subject of debate, as there appears to be critical differences between yeast and mammalian cells. For example, while clathrin and its adaptors are critical for uptake in mammals, they do not seem to be essential in yeast. Endocytic recycling has not been comprehensively studied on a genetic level in yeast, and only limited cargo have been considered, making it difficult to accurately assess the similarity between the two systems. Furthermore, the transport of SNARE proteins is poorly understood, but appears to involve specialized mechanisms. This study uses a genome-wide screening approach to systematically and quantitatively identify genes required for the endocytic recycling of the yeast SNARE protein Snc1, homologous to the mammalian VAMP2/synaptobrevin. Endocytic defects for mutants of many yeast homologs of mammalian endocytosis genes were identified, for the first time. Significantly, a cargo-selective and partially-redundant role for clathrin and its adaptors yAP1801 and yAP1802 was identified. The lipid phosphatase Inp52 was found to mediate AP180 release from endocytic vesicles. Additionally, the previously uncharacterized protein Ldb17, homologous to the mammalian endocytic protein SPIN90, was identified as a new component of the endocytic machinery, and regulates both coat and actin dynamics at endocytic sites. Factors regulating Snc1 recycling were also identified, including the variant clathrin adaptor AP-1R. This is the first reported function for this complex. The previously uncharacterized protein Ima1 was found to be a putative enzyme that specifically binds to AP-1R, and may have activity related to AP-1R function. Overall, this study demonstrates that endocytic recycling in yeast and mammals is more similar than previously appreciated, and identifies new factors in this process. Furthermore, it raises awareness of the degree of cargo-selectivity underlying this pathway, and demonstrates quantitative methods that can be further applied to future studies in both systems. === Medicine, Faculty of === Medical Genetics, Department of === Graduate
author Burston, Helen Elizabeth
spellingShingle Burston, Helen Elizabeth
Genome-wide analysis of endocytic recycling in S. cerevisiae
author_facet Burston, Helen Elizabeth
author_sort Burston, Helen Elizabeth
title Genome-wide analysis of endocytic recycling in S. cerevisiae
title_short Genome-wide analysis of endocytic recycling in S. cerevisiae
title_full Genome-wide analysis of endocytic recycling in S. cerevisiae
title_fullStr Genome-wide analysis of endocytic recycling in S. cerevisiae
title_full_unstemmed Genome-wide analysis of endocytic recycling in S. cerevisiae
title_sort genome-wide analysis of endocytic recycling in s. cerevisiae
publisher University of British Columbia
publishDate 2011
url http://hdl.handle.net/2429/36387
work_keys_str_mv AT burstonhelenelizabeth genomewideanalysisofendocyticrecyclinginscerevisiae
_version_ 1718582936830214144