Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon

A new approach to the problem of failure prediction of wood components and structures is that of fracture mechanics. In order to implement this approach knowledge of flaw growth (or crack propagation) in wood subjected to various stress systems and environmental conditions is required. The extension...

Full description

Bibliographic Details
Main Author: Adams, Roy Douglas
Language:English
Published: University of British Columbia 2011
Subjects:
Online Access:http://hdl.handle.net/2429/35534
id ndltd-UBC-oai-circle.library.ubc.ca-2429-35534
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-355342018-01-05T17:48:02Z Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon Adams, Roy Douglas Fracture mechanics Wood -- Testing A new approach to the problem of failure prediction of wood components and structures is that of fracture mechanics. In order to implement this approach knowledge of flaw growth (or crack propagation) in wood subjected to various stress systems and environmental conditions is required. The extension of flaws is accompanied by the release of energy in the form of acoustic or stress wave emissions, which can be detected and have been found to be reliable indicators of crack growth. Using acoustic emissions as a measure, flaw growth was investigated in stressed bending specimens of three species. The test pieces contained a variety of knot configurations, seasoning checks and resin pockets. Three wood moisture contents were used; specimen size was 2-by-4-inch (nominal) cross section and 50-inch length. A detailed description of the system used for detecting, measuring and recording acoustic emissions is given. Emission activity was measured using an electronic counter. Simultaneous count, load and deflection measurements were recorded and count-deflection and load-deflection curves plotted. The association between acoustic emissions and crack growth is discussed. Four types of integrated count- deflection patterns were found, which generally exhibited two common features. Firstly, a rate change point, where the count rate increased rapidly, and secondly a count increase just prior to failure. The rate change point was approximately coincident with the proportional limit in the load-deflection curve, suggesting an association between elastic behaviour and microfailure development. Several qualitative relationships between the count and load curves are presented. A correlation between stable crack growth and the entire load-deflection curve is postulated. The presence of checks and resin pockets affected the microfailure pattern, shown by increased acoustical activity, without appreciably influencing modulus of rupture. Green specimens for the most part produced lower counts than drier ones. Also clear or essentially clear boards exhibited lower emission counts. Species differences were not apparent. The estimation of modulus of rupture employing parameters from the count-deflection curves is discussed and compared to that using modulus of elasticity. Precision of the prediction was not improved using count parameters. A method for determining the direction of crack propagation in a fractured bending member is described. Forestry, Faculty of Graduate 2011-06-17T16:43:55Z 2011-06-17T16:43:55Z 1969 Text Thesis/Dissertation http://hdl.handle.net/2429/35534 eng For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. University of British Columbia
collection NDLTD
language English
sources NDLTD
topic Fracture mechanics
Wood -- Testing
spellingShingle Fracture mechanics
Wood -- Testing
Adams, Roy Douglas
Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
description A new approach to the problem of failure prediction of wood components and structures is that of fracture mechanics. In order to implement this approach knowledge of flaw growth (or crack propagation) in wood subjected to various stress systems and environmental conditions is required. The extension of flaws is accompanied by the release of energy in the form of acoustic or stress wave emissions, which can be detected and have been found to be reliable indicators of crack growth. Using acoustic emissions as a measure, flaw growth was investigated in stressed bending specimens of three species. The test pieces contained a variety of knot configurations, seasoning checks and resin pockets. Three wood moisture contents were used; specimen size was 2-by-4-inch (nominal) cross section and 50-inch length. A detailed description of the system used for detecting, measuring and recording acoustic emissions is given. Emission activity was measured using an electronic counter. Simultaneous count, load and deflection measurements were recorded and count-deflection and load-deflection curves plotted. The association between acoustic emissions and crack growth is discussed. Four types of integrated count- deflection patterns were found, which generally exhibited two common features. Firstly, a rate change point, where the count rate increased rapidly, and secondly a count increase just prior to failure. The rate change point was approximately coincident with the proportional limit in the load-deflection curve, suggesting an association between elastic behaviour and microfailure development. Several qualitative relationships between the count and load curves are presented. A correlation between stable crack growth and the entire load-deflection curve is postulated. The presence of checks and resin pockets affected the microfailure pattern, shown by increased acoustical activity, without appreciably influencing modulus of rupture. Green specimens for the most part produced lower counts than drier ones. Also clear or essentially clear boards exhibited lower emission counts. Species differences were not apparent. The estimation of modulus of rupture employing parameters from the count-deflection curves is discussed and compared to that using modulus of elasticity. Precision of the prediction was not improved using count parameters. A method for determining the direction of crack propagation in a fractured bending member is described. === Forestry, Faculty of === Graduate
author Adams, Roy Douglas
author_facet Adams, Roy Douglas
author_sort Adams, Roy Douglas
title Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
title_short Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
title_full Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
title_fullStr Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
title_full_unstemmed Fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
title_sort fracture development in wood resulting from bending stresses and detected using the acoustic emission phenomenon
publisher University of British Columbia
publishDate 2011
url http://hdl.handle.net/2429/35534
work_keys_str_mv AT adamsroydouglas fracturedevelopmentinwoodresultingfrombendingstressesanddetectedusingtheacousticemissionphenomenon
_version_ 1718595500905594880