Sausage instabilities on a flowing jet - an experimental study

The microwave resonator technique has been successfully employed in the study of a liquid model of a z pinch. A liquid column has formed an integral part of a microwave cavity, and changes in the frequency of such a cavity have been used to study the growth rates of the current driven instability....

Full description

Bibliographic Details
Main Author: Lindstrom, Douglas Willard
Language:English
Published: University of British Columbia 2011
Subjects:
Online Access:http://hdl.handle.net/2429/34163
Description
Summary:The microwave resonator technique has been successfully employed in the study of a liquid model of a z pinch. A liquid column has formed an integral part of a microwave cavity, and changes in the frequency of such a cavity have been used to study the growth rates of the current driven instability. The growth rates of the instability are seen to be in agreement with the standard theory for the wavelength equal to three centimeters. It is also seen that a definite stabilization is reached for a finite pinch amplitude. A simple theory balancing compressive streamline forces and magnetic pressure show that the maximum pinched amplitude should grow as the square of the axial current, which is what was observed. === Science, Faculty of === Physics and Astronomy, Department of === Graduate