Role of galectin-1 in sensory neuron development and peripheral nerve repair

In comparison to adult central nervous system (CNS) axons, peripheral nervous system (PNS) axons have a high propensity for regrowth following injury. The PNS axon’s capacity to regenerate depends on an effective response within the neuron itself, combined with a supportive environment maintained b...

Full description

Bibliographic Details
Main Author: Gaudet, Andrew David
Language:English
Published: University of British Columbia 2010
Online Access:http://hdl.handle.net/2429/27481
id ndltd-UBC-oai-circle.library.ubc.ca-2429-27481
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-274812018-01-05T17:24:29Z Role of galectin-1 in sensory neuron development and peripheral nerve repair Gaudet, Andrew David In comparison to adult central nervous system (CNS) axons, peripheral nervous system (PNS) axons have a high propensity for regrowth following injury. The PNS axon’s capacity to regenerate depends on an effective response within the neuron itself, combined with a supportive environment maintained by cells surrounding the axon. Unfortunately, successful reconnection of peripheral axons with appropriate targets is hampered by discontinuities associated with injury and by a decreased growth response over time. Studying strategies that improve peripheral nerve repair could enhance functional outcomes following peripheral nerve injury (PNI), and might provide insight for CNS repair. The small protein galectin-1 (Gal1) is required for developmental targeting of specific olfactory axons and promotes peripheral axon regeneration. Despite this, Gal1’s role in sensory axon development and regeneration is not well-defined. In this dissertation, I explore how Gal1 affects developmental and regenerative axon growth. Using mice lacking Gal1 (Lgals1-/-), I show that Gal1 is required for proper targeting of central axons of small-diameter, nociceptive dorsal root ganglion (DRG) neurons. Interestingly, Lgals1-/- mice had corresponding deficits in behavioural responses to noxious stimuli. Next, I characterize the regulation of Gal1 in DRG neurons and their environment following PNI and dorsal root injury (DRI). DRG neurons mount a robust regenerative response following injury of their peripheral, but not central branch. Neuronal Gal1 was upregulated after PNI, but not DRI. In addition, Gal1 expression in the regrowing axon’s environment correlated with the permissiveness of that environment. I then examine whether Gal1 promotes axonal regeneration through mechanisms intrinsic and/or extrinsic to the injured neuron. Gal1 did not affect DRG neurons’ intrinsic growth state: Lgals1-/- neurons did not display abnormal neurite outgrowth, and exogenous oxidized Gal1 (Gal1/Ox) did not affect neurite outgrowth. Gal1 does affect the response of non-neuronal cells. I show that Gal1 promotes accumulation of immune cells called macrophages following PNI. Injection of Gal1-specific antibodies attenuated typical PNI-induced accumulation of macrophages; conversely, Gal1/Ox injection into uninjured nerves facilitated macrophage accumulation in wild-type mice. My data suggest that Gal1 does not elicit axon growth directly; rather, Gal1 likely promotes axon regeneration indirectly by enhancing PNI-induced macrophage accumulation. Science, Faculty of Zoology, Department of Graduate 2010-08-17T14:05:20Z 2010-08-17T14:05:20Z 2010 2010-11 Text Thesis/Dissertation http://hdl.handle.net/2429/27481 eng Attribution-NonCommercial-NoDerivs 3.0 Unported http://creativecommons.org/licenses/by-nc-nd/3.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description In comparison to adult central nervous system (CNS) axons, peripheral nervous system (PNS) axons have a high propensity for regrowth following injury. The PNS axon’s capacity to regenerate depends on an effective response within the neuron itself, combined with a supportive environment maintained by cells surrounding the axon. Unfortunately, successful reconnection of peripheral axons with appropriate targets is hampered by discontinuities associated with injury and by a decreased growth response over time. Studying strategies that improve peripheral nerve repair could enhance functional outcomes following peripheral nerve injury (PNI), and might provide insight for CNS repair. The small protein galectin-1 (Gal1) is required for developmental targeting of specific olfactory axons and promotes peripheral axon regeneration. Despite this, Gal1’s role in sensory axon development and regeneration is not well-defined. In this dissertation, I explore how Gal1 affects developmental and regenerative axon growth. Using mice lacking Gal1 (Lgals1-/-), I show that Gal1 is required for proper targeting of central axons of small-diameter, nociceptive dorsal root ganglion (DRG) neurons. Interestingly, Lgals1-/- mice had corresponding deficits in behavioural responses to noxious stimuli. Next, I characterize the regulation of Gal1 in DRG neurons and their environment following PNI and dorsal root injury (DRI). DRG neurons mount a robust regenerative response following injury of their peripheral, but not central branch. Neuronal Gal1 was upregulated after PNI, but not DRI. In addition, Gal1 expression in the regrowing axon’s environment correlated with the permissiveness of that environment. I then examine whether Gal1 promotes axonal regeneration through mechanisms intrinsic and/or extrinsic to the injured neuron. Gal1 did not affect DRG neurons’ intrinsic growth state: Lgals1-/- neurons did not display abnormal neurite outgrowth, and exogenous oxidized Gal1 (Gal1/Ox) did not affect neurite outgrowth. Gal1 does affect the response of non-neuronal cells. I show that Gal1 promotes accumulation of immune cells called macrophages following PNI. Injection of Gal1-specific antibodies attenuated typical PNI-induced accumulation of macrophages; conversely, Gal1/Ox injection into uninjured nerves facilitated macrophage accumulation in wild-type mice. My data suggest that Gal1 does not elicit axon growth directly; rather, Gal1 likely promotes axon regeneration indirectly by enhancing PNI-induced macrophage accumulation. === Science, Faculty of === Zoology, Department of === Graduate
author Gaudet, Andrew David
spellingShingle Gaudet, Andrew David
Role of galectin-1 in sensory neuron development and peripheral nerve repair
author_facet Gaudet, Andrew David
author_sort Gaudet, Andrew David
title Role of galectin-1 in sensory neuron development and peripheral nerve repair
title_short Role of galectin-1 in sensory neuron development and peripheral nerve repair
title_full Role of galectin-1 in sensory neuron development and peripheral nerve repair
title_fullStr Role of galectin-1 in sensory neuron development and peripheral nerve repair
title_full_unstemmed Role of galectin-1 in sensory neuron development and peripheral nerve repair
title_sort role of galectin-1 in sensory neuron development and peripheral nerve repair
publisher University of British Columbia
publishDate 2010
url http://hdl.handle.net/2429/27481
work_keys_str_mv AT gaudetandrewdavid roleofgalectin1insensoryneurondevelopmentandperipheralnerverepair
_version_ 1718582562366947328