Gaseous nitrogen transformations in a mature forest ecosystem

In mature forests, gains and losses of nitrogen may be dominated by the gaseous transformations, asymbiotic nitrogen fixation and biological denitrification. Both are reduction reactions and are affected by moisture conditions, temperature, pH, supply of organic carbon and the availability of minera...

Full description

Bibliographic Details
Main Author: Cushon, Geoffrey H.
Language:English
Published: University of British Columbia 2010
Subjects:
Online Access:http://hdl.handle.net/2429/24623
Description
Summary:In mature forests, gains and losses of nitrogen may be dominated by the gaseous transformations, asymbiotic nitrogen fixation and biological denitrification. Both are reduction reactions and are affected by moisture conditions, temperature, pH, supply of organic carbon and the availability of mineral nitrogen. Gaseous nitrogen inputs, due to asymbiotic nitrogen fixation, and outputs, due to biological denitrification were quantified for a mature coniferous forest in southwestern British Columbia. Forest floor material, mineral soil, decaying wood, foliage and bark were incubated in an atmosphere of 0.1 atm acetylene to allow the simultaneous measurement of N₂0 production by denitrifying bacteria and acetylene reduction by free-living bacteria and blue-green algae. Forest floor material accounted for 80% of a total annual input of 0.8 kg N ha⁻1 a⁻1. Relatively small amounts of nitrogen were fixed in mineral soil, decaying wood and foliage and no indication of nitrogen fixation activity in bark was detected. Traces of denitrification were found, but gaseous output of nitrogen was effectively 0.0 kg N ha⁻1 a⁻1. It is hypothesized that this forest may prevent nitrogen Joss by outcompeting other sinks for mineral nitrogen, thereby allowing a slow accretion of nitrogen by asymbiotic nitrogen fixation and bulk precipitation input. === Forestry, Faculty of === Graduate