Flotation characteristics of arsenopyrite

Electrochemical methods, surface spectroscopy and flotation tests have been used to study the influence of the oxidation of arsenopyrite on its floatability with xahthate. Cyclic voltammetric studies indicated that the oxidation of arsenopyrite at pH greater than 7 results in the formation of ferri...

Full description

Bibliographic Details
Main Author: Vreugde, Morris Johannes Aloysius
Language:English
Published: University of British Columbia 2010
Subjects:
Online Access:http://hdl.handle.net/2429/24380
Description
Summary:Electrochemical methods, surface spectroscopy and flotation tests have been used to study the influence of the oxidation of arsenopyrite on its floatability with xahthate. Cyclic voltammetric studies indicated that the oxidation of arsenopyrite at pH greater than 7 results in the formation of ferric hydroxide deposits on the surface of the mineral. Arsenic is oxidized to arsenate and sulphur is oxidized to sulphate. The arsenate is incorporated in the ferric hydroxide deposits while sulphate diffuses into solution. Below pH=7, soluble iron species are formed and the surface becomes increasingly covered with elemental sulphur with decreasing pH. Increasing temperature has no influence on the quantity of hydroxide formed over the range 30° to 45°C but results in thick, porous films at temperature greater than 45°C. The oxidation of arsenopyrite was demonstrated to occur at lower oxidation potentials than for pyrite although this effect decreased with increasing temperature. Mixed potential studies indicated that the potentials required for arsenopyrite oxidation could be achieved with common oxidizing agents. Selective oxidation of arsenopyrite in a bulk pyrite-arsenopyrite concentrate was indicated to be possible. The formation of iron hydroxide deposits on the surface of arsenopyrite resulted in the inhibition of subsequent oxidation of xanthate to dixanthogen at the mineral's surface. ESCA studies confirmed the formation of oxidized iron layers at the surface of arsenopyrite and revealed that essentially all the arsenate which was formed was incorporated in these layers. Sulphur became oxidized at the pH studied and to a large extent went into solution. Flotation studies demonstrated the use of oxidation for arsenopyrite depression. In the presence of oxidation, increasing pH above pH=7 resulted in increased arsenopyrite depression while increasing temperature had little effect until a temperature of 40°C was exceeded. Previously activated arsenopyrite could be depressed through the use of oxidizing agents. Arsenopyrite could be selectively depressed from a bulk pyrite-arsenopyrite concentrate through the use of oxidizing agents. === Applied Science, Faculty of === Mining Engineering, Keevil Institute of === Graduate