Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease

Overall, we aimed to discover more about mast cell physiology, focusing on their homeostatic regulation in vivo, their activation in vitro and in allergic disease, their gene expression patterns, and their surface antigens. In our first study, our objective was to establish the function of Src homol...

Full description

Bibliographic Details
Main Author: Haddon, David James
Language:English
Published: University of British Columbia 2010
Online Access:http://hdl.handle.net/2429/24219
id ndltd-UBC-oai-circle.library.ubc.ca-2429-24219
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-242192018-01-05T17:24:17Z Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease Haddon, David James Overall, we aimed to discover more about mast cell physiology, focusing on their homeostatic regulation in vivo, their activation in vitro and in allergic disease, their gene expression patterns, and their surface antigens. In our first study, our objective was to establish the function of Src homology 2-containing inositol 5’-phosphatase (SHIPI), in mast cells in vivo. SHIP1 inhibits immune receptor signaling through hydrolysis of the phosphatidylinositol-3 kinase (P13K) product Pl-3,4,5-P₃ ,forming P1-3,4-P₂. In mast cells, SHIPI represses FcεRI- and cytokine-mediated activation in vitro, but little is known regarding the function of SHIPI in mast cells in vivo, or the susceptibility of Shipl⁻/⁻ mice to mast cell-associated diseases. We found that ⁻ mice have systemic mast cell hyperplasia, increased serum levels of IL-6, TNF, and IL-5, and a heightened anaphylactic response. Further, by reconstituting mast cell-deficient mice with Ship1⁺/⁺ or Shipl⁻/⁻ mast cells, we found that the above defects were due to loss of SHIPI in mast cells. Additionally, we found that mice reconstituted with Shipl⁻/⁻ mast cells suffered worse allergic asthma pathology than those reconstituted with Ship1⁺/⁺ mast cells. In summary, our data show that SHIPI represses allergic inflammation and mast cell hyperplasia in vivo, and that SHIPI exerts these effects specifically in mast cells. In our second study we compared Lin⁻Sca-1⁺c-kit⁺ (LSK) cells, which are highly enriched for hematopoietic stem cells (HSC), and mast cells, using microarray expression analysis, and identified prion protein (PrPC) as a potentially novel marker of mast cells. Upon further investigation, we found that PrPC (1) is expressed on the surface of human and mouse mast cells, both in vitro and in vivo; (2) is not required for mast cell differentiation or tissue homeostasis; (3) is released by mast cells at steady state and rapidly upon activation; and (4) is released in response to mast cell dependent allergic inflammation in vivo. Since mast cells are long-lived and known to traffic to the brain and central nervous system (CNS), our observations could have important implications for the transmission and pathology of prion diseases. Further, mast cells could be a unique system to investigate PrPc’s normal function. Medicine, Faculty of Medical Genetics, Department of Graduate 2010-04-27T16:06:44Z 2009-10-30 2009 2009-11 Text Thesis/Dissertation http://hdl.handle.net/2429/24219 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Overall, we aimed to discover more about mast cell physiology, focusing on their homeostatic regulation in vivo, their activation in vitro and in allergic disease, their gene expression patterns, and their surface antigens. In our first study, our objective was to establish the function of Src homology 2-containing inositol 5’-phosphatase (SHIPI), in mast cells in vivo. SHIP1 inhibits immune receptor signaling through hydrolysis of the phosphatidylinositol-3 kinase (P13K) product Pl-3,4,5-P₃ ,forming P1-3,4-P₂. In mast cells, SHIPI represses FcεRI- and cytokine-mediated activation in vitro, but little is known regarding the function of SHIPI in mast cells in vivo, or the susceptibility of Shipl⁻/⁻ mice to mast cell-associated diseases. We found that ⁻ mice have systemic mast cell hyperplasia, increased serum levels of IL-6, TNF, and IL-5, and a heightened anaphylactic response. Further, by reconstituting mast cell-deficient mice with Ship1⁺/⁺ or Shipl⁻/⁻ mast cells, we found that the above defects were due to loss of SHIPI in mast cells. Additionally, we found that mice reconstituted with Shipl⁻/⁻ mast cells suffered worse allergic asthma pathology than those reconstituted with Ship1⁺/⁺ mast cells. In summary, our data show that SHIPI represses allergic inflammation and mast cell hyperplasia in vivo, and that SHIPI exerts these effects specifically in mast cells. In our second study we compared Lin⁻Sca-1⁺c-kit⁺ (LSK) cells, which are highly enriched for hematopoietic stem cells (HSC), and mast cells, using microarray expression analysis, and identified prion protein (PrPC) as a potentially novel marker of mast cells. Upon further investigation, we found that PrPC (1) is expressed on the surface of human and mouse mast cells, both in vitro and in vivo; (2) is not required for mast cell differentiation or tissue homeostasis; (3) is released by mast cells at steady state and rapidly upon activation; and (4) is released in response to mast cell dependent allergic inflammation in vivo. Since mast cells are long-lived and known to traffic to the brain and central nervous system (CNS), our observations could have important implications for the transmission and pathology of prion diseases. Further, mast cells could be a unique system to investigate PrPc’s normal function. === Medicine, Faculty of === Medical Genetics, Department of === Graduate
author Haddon, David James
spellingShingle Haddon, David James
Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
author_facet Haddon, David James
author_sort Haddon, David James
title Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
title_short Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
title_full Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
title_fullStr Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
title_full_unstemmed Mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
title_sort mast cells : homeostatic regulation, activation, gene expression, surface antigens, and role in allergic disease
publisher University of British Columbia
publishDate 2010
url http://hdl.handle.net/2429/24219
work_keys_str_mv AT haddondavidjames mastcellshomeostaticregulationactivationgeneexpressionsurfaceantigensandroleinallergicdisease
_version_ 1718582456460771328