Geometry of holomorphic vector fields and applications of Gm-actions to linear algebraic groups

A generalization of a theorem of N.R. 0'Brian, zeroes of holomorphic vector fields and the Grothendieck residue, Bull. London Math. Soc, 7 (1975) is given. The theorem of Riemann-Roch and Hirzebruch for V-equivariant holomorphic vector bundles is obtained, via holomorphic vector fields, in the...

Full description

Bibliographic Details
Main Author: Akyildiz, Ersan
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/2429/20644
Description
Summary:A generalization of a theorem of N.R. 0'Brian, zeroes of holomorphic vector fields and the Grothendieck residue, Bull. London Math. Soc, 7 (1975) is given. The theorem of Riemann-Roch and Hirzebruch for V-equivariant holomorphic vector bundles is obtained, via holomorphic vector fields, in the case all zeroes of the holomorphic vector field V are isolated. The Bruhat decomposition of G/B is obtained from the G -action on G/B . It is shown that a theorem of A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98, 480-497 (1973) is the generalization of the Bruhat decomposition on G/B , which was a conjecture of B. Iversen. The existence of a G -action on G/P with only one fixed a point is proved, where G is a connected linear algebraic group defined over an algebraically closed field k of characteristic zero and P is a parabolic subgroup of G . The following is obtained P = N[sub G](Pu) = {geG: Adg(Pu) = Pu} where G is a connected linear algebraic group, P is a parabolic subgroup of G and P^ is the tangent space of the set of unipotent elements of P at the identity. An elementary proof of P = N[sub G](P) = {geG: gPg ⁻¹=P} is given, where G is a connected linear algebraic group and P is a parabolic subgroup of G . === Science, Faculty of === Mathematics, Department of === Graduate