Synthetic studies in dihydroindole and indole alkaloids

A synthetic approach toward the synthesis of vindoline (3) and a reinvestigation of the total synthesis of vincaminoridine (4) and epivincaminoridine (4a) is described. The synthetic sequence involves alkylation with benzyl chloride of the monosodium salt of propane-l,3-diol to give y-benzyloxypropa...

Full description

Bibliographic Details
Main Author: De Souza, Joao Pedro
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/2429/19047
id ndltd-UBC-oai-circle.library.ubc.ca-2429-19047
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-190472018-01-05T17:39:48Z Synthetic studies in dihydroindole and indole alkaloids De Souza, Joao Pedro Indole Alkaloids A synthetic approach toward the synthesis of vindoline (3) and a reinvestigation of the total synthesis of vincaminoridine (4) and epivincaminoridine (4a) is described. The synthetic sequence involves alkylation with benzyl chloride of the monosodium salt of propane-l,3-diol to give y-benzyloxypropanol (197). Treatment of 197 with thionyl chloride afforded benzyl-y-chloropropyl ether (198). Alkylation of ethyl diethyl malonate with 198 provided diethyl Y~DenzyloxyProPyletnyl malonate (134). Basic hydrolysis of 134 gave y-benzyloxypropylethyl malonic acid (199), which upon decarboxylation provided 2-(y-benzyloxypropyl)-butanoic acid (200). The monoacid (200) was esterified with ethanol to provide ethyl tx-(y-benzyloxypropyl)-butanoate (135). Alkylation of 135 with allyl bromide gave ethyl-a-(y-benzyloxypropyl)-a-allyl-butanoate (201), which upon treatment with osmium tetroxide and sodium periodate gave ethyl a(y-benzyloxypropyl)-a-(a-formylmethyl)-butanoate (140). Condensation of 140 with 6-methoxy tryptamine afforded the tetracyclic lactam (150) . Lithium aluminum hydride reduction of the latter, followed by hydrogenolysis of the benzyl group gave two isomeric tetracyclic alcohols (204) . These intermediates were converted via their mesylate derivatives to the quaternary salts (205), which upon treatment with potassium cyanide gave the isomeric cyanides (216). Acid hydrolysis of 216 gave the corresponding carbomethoxy derivative (151). Alkylation of 151 with methyl iodide provided dl-vincaminoridine (4) and dl-epivincaminoridine (4a) . Transannular cyclization of the latter substances gave the pentacyclic aspidosperma-type system (195) . The degradation sequence involved acid hydrolysis of vindoline (3) to provide desacetyl vindoline (224), which upon catalytic hydrogenation gave desacetyldihydrovindoline (225) . Pyrolysis of 225 afforded the ketone (86), which upon treatment with dimethyl carbonate provided the g-ketoester (226) . Treatment of the sodium enolate of 226 with oxygen-hydrogen peroxide gave the hydroxy ketoester (227). Treatment of desacetyldihydrovindoline (225) with N,N-thiocarbonyldiimidazole gave the thiocarbonate derivative (230), which upon desulfurization with Raney nickel afforded the unsaturated ester (231) . Catalytic hydrogenation of 231 gave the saturated ester (232) , which upon treatment with lithium diisopropyl amide and oxygen-hydrogen peroxide provided the hydroxyester (234). The saturated ester 232 was converted to the alcohol derivative (237) by reduction with aluminum hydride. Oppenauer oxidation of 237 gave the aldehyde (238). Finally potassium permanganate oxidation of the unsaturated ester (231) gave 5-membered lactam (240), 6-membered lactam (241), N -formyl-5-membered lactam (242), ct and NQ-formyl-6-membered lactam (243) . Science, Faculty of Chemistry, Department of Graduate 2010-01-22T22:57:10Z 2010-01-22T22:57:10Z 1973 Text Thesis/Dissertation http://hdl.handle.net/2429/19047 eng For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
collection NDLTD
language English
sources NDLTD
topic Indole
Alkaloids
spellingShingle Indole
Alkaloids
De Souza, Joao Pedro
Synthetic studies in dihydroindole and indole alkaloids
description A synthetic approach toward the synthesis of vindoline (3) and a reinvestigation of the total synthesis of vincaminoridine (4) and epivincaminoridine (4a) is described. The synthetic sequence involves alkylation with benzyl chloride of the monosodium salt of propane-l,3-diol to give y-benzyloxypropanol (197). Treatment of 197 with thionyl chloride afforded benzyl-y-chloropropyl ether (198). Alkylation of ethyl diethyl malonate with 198 provided diethyl Y~DenzyloxyProPyletnyl malonate (134). Basic hydrolysis of 134 gave y-benzyloxypropylethyl malonic acid (199), which upon decarboxylation provided 2-(y-benzyloxypropyl)-butanoic acid (200). The monoacid (200) was esterified with ethanol to provide ethyl tx-(y-benzyloxypropyl)-butanoate (135). Alkylation of 135 with allyl bromide gave ethyl-a-(y-benzyloxypropyl)-a-allyl-butanoate (201), which upon treatment with osmium tetroxide and sodium periodate gave ethyl a(y-benzyloxypropyl)-a-(a-formylmethyl)-butanoate (140). Condensation of 140 with 6-methoxy tryptamine afforded the tetracyclic lactam (150) . Lithium aluminum hydride reduction of the latter, followed by hydrogenolysis of the benzyl group gave two isomeric tetracyclic alcohols (204) . These intermediates were converted via their mesylate derivatives to the quaternary salts (205), which upon treatment with potassium cyanide gave the isomeric cyanides (216). Acid hydrolysis of 216 gave the corresponding carbomethoxy derivative (151). Alkylation of 151 with methyl iodide provided dl-vincaminoridine (4) and dl-epivincaminoridine (4a) . Transannular cyclization of the latter substances gave the pentacyclic aspidosperma-type system (195) . The degradation sequence involved acid hydrolysis of vindoline (3) to provide desacetyl vindoline (224), which upon catalytic hydrogenation gave desacetyldihydrovindoline (225) . Pyrolysis of 225 afforded the ketone (86), which upon treatment with dimethyl carbonate provided the g-ketoester (226) . Treatment of the sodium enolate of 226 with oxygen-hydrogen peroxide gave the hydroxy ketoester (227). Treatment of desacetyldihydrovindoline (225) with N,N-thiocarbonyldiimidazole gave the thiocarbonate derivative (230), which upon desulfurization with Raney nickel afforded the unsaturated ester (231) . Catalytic hydrogenation of 231 gave the saturated ester (232) , which upon treatment with lithium diisopropyl amide and oxygen-hydrogen peroxide provided the hydroxyester (234). The saturated ester 232 was converted to the alcohol derivative (237) by reduction with aluminum hydride. Oppenauer oxidation of 237 gave the aldehyde (238). Finally potassium permanganate oxidation of the unsaturated ester (231) gave 5-membered lactam (240), 6-membered lactam (241), N -formyl-5-membered lactam (242), ct and NQ-formyl-6-membered lactam (243) . === Science, Faculty of === Chemistry, Department of === Graduate
author De Souza, Joao Pedro
author_facet De Souza, Joao Pedro
author_sort De Souza, Joao Pedro
title Synthetic studies in dihydroindole and indole alkaloids
title_short Synthetic studies in dihydroindole and indole alkaloids
title_full Synthetic studies in dihydroindole and indole alkaloids
title_fullStr Synthetic studies in dihydroindole and indole alkaloids
title_full_unstemmed Synthetic studies in dihydroindole and indole alkaloids
title_sort synthetic studies in dihydroindole and indole alkaloids
publishDate 2010
url http://hdl.handle.net/2429/19047
work_keys_str_mv AT desouzajoaopedro syntheticstudiesindihydroindoleandindolealkaloids
_version_ 1718591019030675456