Summary: | A system for vessel characterization aimed at detecting deep vein thrombosis (DVT) in the lower limbs has been developed and evaluated using ultrasound image processing, location and force sensors measurements, blood flow information and a protocol based on the current clinical standard, compression ultrasound. The goal is to provide an objective and repeatable system to measure DVT in a rapid and standardized manner, as this has been suggested in the literature as an approach to improve overall detection of the disease.
The system uses a spatial Kalman filter-based algorithm with an elliptical model in the measurement equation to detect vessel contours in transverse ultrasound images and estimate ellipse parameters, and temporal constant velocity Kalman filters for tracking vessel location in real-time. The vessel characterization also comprises building a 3-D vessel model and performing compression and blood flow assessments to calculate measures that indicate the possibility of DVT in a vessel. A user interface designed for assessing a vessel for DVT was also developed.
The system and components were implemented and tested in simulations, laboratory settings, and clinical settings. Contour detection results are good, with mean and rms errors ranging from 1.47-3.64 and 3.69-9.67 pixels, respectively, in simulated and patient images, and parameter estimation errors of 5%. Experiments showed errors of 3-5 pixels for the tracking approaches. The measures for DVT were evaluated, independently and integrated in the system. The complete system was evaluated, with sensitivity of 67-100% and specificity of 50-89.5%. System learnability and memorability were evaluated in a separate user study, with good results.
Contributions include a segmentation approach using a full parameter ellipse model in an extended Kalman filter, incorporating multiple measurements, an alternate sampling method for faster parameter convergence and application-specific initialization, and a tracking approach that includes a sub-sampled sum of absolutes similarity calculation and a method to detect vessel bifurcations using flow data. Further contributions include an integrated system for DVT detection that can combine ultrasound B-mode, colour flow and elastography images for vessel characterization, a system interface design focusing on usability that was evaluated with medical professionals, and system evaluations through multiple patient studies. === Applied Science, Faculty of === Electrical and Computer Engineering, Department of === Graduate
|