Modeling Script Knowledge for Machine Commonsense Reading Comprehension
碩士 === 國立臺灣大學 === 資訊工程學研究所 === 107 === Introducing commonsense knowledge to the machine reading comprehension (MRC) task attracts attention in recent years. Most studies use ConceptNet to inference the abstract concepts and help their models answer the questions in reading comprehension. However, fe...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2019
|
Online Access: | http://ndltd.ncl.edu.tw/handle/7ebdzq |
id |
ndltd-TW-107NTU05392091 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-107NTU053920912019-11-16T05:27:59Z http://ndltd.ncl.edu.tw/handle/7ebdzq Modeling Script Knowledge for Machine Commonsense Reading Comprehension 整合腳本知識的機器常識閱讀理解 Hung-Kuo Liu 劉宏國 碩士 國立臺灣大學 資訊工程學研究所 107 Introducing commonsense knowledge to the machine reading comprehension (MRC) task attracts attention in recent years. Most studies use ConceptNet to inference the abstract concepts and help their models answer the questions in reading comprehension. However, few studies employ Script knowledge to improve their MRC models. This thesis proposes a novel model for MRC by incorporating Script knowledge for modeling the various types of commonsense. Experimental results show that our model achieves the best performance on the MCScript dataset in the SemEval-2018 Task 11 and it increases the accuracy on the COIN dataset. 陳信希 2019 學位論文 ; thesis 40 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣大學 === 資訊工程學研究所 === 107 === Introducing commonsense knowledge to the machine reading comprehension (MRC) task attracts attention in recent years. Most studies use ConceptNet to inference the abstract concepts and help their models answer the questions in reading comprehension. However, few studies employ Script knowledge to improve their MRC models. This thesis proposes a novel model for MRC by incorporating Script knowledge for modeling the various types of commonsense. Experimental results show that our model achieves the best performance on the MCScript dataset in the SemEval-2018 Task 11 and it increases the accuracy on the COIN dataset.
|
author2 |
陳信希 |
author_facet |
陳信希 Hung-Kuo Liu 劉宏國 |
author |
Hung-Kuo Liu 劉宏國 |
spellingShingle |
Hung-Kuo Liu 劉宏國 Modeling Script Knowledge for Machine Commonsense Reading Comprehension |
author_sort |
Hung-Kuo Liu |
title |
Modeling Script Knowledge for Machine Commonsense Reading Comprehension |
title_short |
Modeling Script Knowledge for Machine Commonsense Reading Comprehension |
title_full |
Modeling Script Knowledge for Machine Commonsense Reading Comprehension |
title_fullStr |
Modeling Script Knowledge for Machine Commonsense Reading Comprehension |
title_full_unstemmed |
Modeling Script Knowledge for Machine Commonsense Reading Comprehension |
title_sort |
modeling script knowledge for machine commonsense reading comprehension |
publishDate |
2019 |
url |
http://ndltd.ncl.edu.tw/handle/7ebdzq |
work_keys_str_mv |
AT hungkuoliu modelingscriptknowledgeformachinecommonsensereadingcomprehension AT liúhóngguó modelingscriptknowledgeformachinecommonsensereadingcomprehension AT hungkuoliu zhěnghéjiǎoběnzhīshídejīqìchángshíyuèdúlǐjiě AT liúhóngguó zhěnghéjiǎoběnzhīshídejīqìchángshíyuèdúlǐjiě |
_version_ |
1719292296869969920 |