Modeling Script Knowledge for Machine Commonsense Reading Comprehension

碩士 === 國立臺灣大學 === 資訊工程學研究所 === 107 === Introducing commonsense knowledge to the machine reading comprehension (MRC) task attracts attention in recent years. Most studies use ConceptNet to inference the abstract concepts and help their models answer the questions in reading comprehension. However, fe...

Full description

Bibliographic Details
Main Authors: Hung-Kuo Liu, 劉宏國
Other Authors: 陳信希
Format: Others
Language:en_US
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/handle/7ebdzq
id ndltd-TW-107NTU05392091
record_format oai_dc
spelling ndltd-TW-107NTU053920912019-11-16T05:27:59Z http://ndltd.ncl.edu.tw/handle/7ebdzq Modeling Script Knowledge for Machine Commonsense Reading Comprehension 整合腳本知識的機器常識閱讀理解 Hung-Kuo Liu 劉宏國 碩士 國立臺灣大學 資訊工程學研究所 107 Introducing commonsense knowledge to the machine reading comprehension (MRC) task attracts attention in recent years. Most studies use ConceptNet to inference the abstract concepts and help their models answer the questions in reading comprehension. However, few studies employ Script knowledge to improve their MRC models. This thesis proposes a novel model for MRC by incorporating Script knowledge for modeling the various types of commonsense. Experimental results show that our model achieves the best performance on the MCScript dataset in the SemEval-2018 Task 11 and it increases the accuracy on the COIN dataset. 陳信希 2019 學位論文 ; thesis 40 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣大學 === 資訊工程學研究所 === 107 === Introducing commonsense knowledge to the machine reading comprehension (MRC) task attracts attention in recent years. Most studies use ConceptNet to inference the abstract concepts and help their models answer the questions in reading comprehension. However, few studies employ Script knowledge to improve their MRC models. This thesis proposes a novel model for MRC by incorporating Script knowledge for modeling the various types of commonsense. Experimental results show that our model achieves the best performance on the MCScript dataset in the SemEval-2018 Task 11 and it increases the accuracy on the COIN dataset.
author2 陳信希
author_facet 陳信希
Hung-Kuo Liu
劉宏國
author Hung-Kuo Liu
劉宏國
spellingShingle Hung-Kuo Liu
劉宏國
Modeling Script Knowledge for Machine Commonsense Reading Comprehension
author_sort Hung-Kuo Liu
title Modeling Script Knowledge for Machine Commonsense Reading Comprehension
title_short Modeling Script Knowledge for Machine Commonsense Reading Comprehension
title_full Modeling Script Knowledge for Machine Commonsense Reading Comprehension
title_fullStr Modeling Script Knowledge for Machine Commonsense Reading Comprehension
title_full_unstemmed Modeling Script Knowledge for Machine Commonsense Reading Comprehension
title_sort modeling script knowledge for machine commonsense reading comprehension
publishDate 2019
url http://ndltd.ncl.edu.tw/handle/7ebdzq
work_keys_str_mv AT hungkuoliu modelingscriptknowledgeformachinecommonsensereadingcomprehension
AT liúhóngguó modelingscriptknowledgeformachinecommonsensereadingcomprehension
AT hungkuoliu zhěnghéjiǎoběnzhīshídejīqìchángshíyuèdúlǐjiě
AT liúhóngguó zhěnghéjiǎoběnzhīshídejīqìchángshíyuèdúlǐjiě
_version_ 1719292296869969920