Some new convergence theorems

碩士 === 國立高雄師範大學 === 數學系 === 107 === Let E and F be nonempty subsets of a metric space (X,d) and T:E∪F → E∪F be a cyclic mapping. In this paper, we establish some convergence theorems satisfying the following new nonlinear condition: (B) there exists an MT-function ϕ:[0,∞)→[0,1) such that d(T...

Full description

Bibliographic Details
Main Authors: BIAN,ZHI-PING, 邊智屏
Other Authors: LIN,ING-JER
Format: Others
Language:en_US
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/handle/c2jv2a
Description
Summary:碩士 === 國立高雄師範大學 === 數學系 === 107 === Let E and F be nonempty subsets of a metric space (X,d) and T:E∪F → E∪F be a cyclic mapping. In this paper, we establish some convergence theorems satisfying the following new nonlinear condition: (B) there exists an MT-function ϕ:[0,∞)→[0,1) such that d(Tx,Ty)≤ϕ(d(x,y))max{(1/9)[4d(x,y)+d(x,Ty)+2d(x,Tx)+d(y,Ty)], (1/(10))[d(x,y)+d(x,Ty)+3d(Tx,Ty)+2d(y,Ty)], (1/7)[d(x,y)+d(x,Ty)+d(x,Tx)+2d(Tx,Ty)], (1/8)[d(x,y)+2d(x,Ty)+d(Tx,Ty)+d(y,Ty)]} +(1-ϕ(d(x,y)))dist(E,F) for all x∈E and y∈F. 以上為數學公式,因網頁呈現方式的關係略有不同,請參考全文檔