Some new convergence theorems
碩士 === 國立高雄師範大學 === 數學系 === 107 === Let E and F be nonempty subsets of a metric space (X,d) and T:E∪F → E∪F be a cyclic mapping. In this paper, we establish some convergence theorems satisfying the following new nonlinear condition: (B) there exists an MT-function ϕ:[0,∞)→[0,1) such that d(T...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2019
|
Online Access: | http://ndltd.ncl.edu.tw/handle/c2jv2a |
Summary: | 碩士 === 國立高雄師範大學 === 數學系 === 107 === Let E and F be nonempty subsets of a metric space (X,d) and T:E∪F → E∪F be a cyclic mapping. In this paper, we establish some convergence theorems satisfying the following new nonlinear condition:
(B) there exists an MT-function ϕ:[0,∞)→[0,1) such that
d(Tx,Ty)≤ϕ(d(x,y))max{(1/9)[4d(x,y)+d(x,Ty)+2d(x,Tx)+d(y,Ty)],
(1/(10))[d(x,y)+d(x,Ty)+3d(Tx,Ty)+2d(y,Ty)],
(1/7)[d(x,y)+d(x,Ty)+d(x,Tx)+2d(Tx,Ty)],
(1/8)[d(x,y)+2d(x,Ty)+d(Tx,Ty)+d(y,Ty)]}
+(1-ϕ(d(x,y)))dist(E,F)
for all x∈E and y∈F.
以上為數學公式,因網頁呈現方式的關係略有不同,請參考全文檔
|
---|