Summary: | 碩士 === 國立中央大學 === 電機工程學系 === 107 === Synthetic Aperture Radar (SAR) is a radar system that is often used to perform telemetry tasks. This radar system synthesizes a large aperture to improve image resolution by moving the radar antenna. In order to pursue better resolution, this paper mainly implements the imaging algorithms and Doppler centroid estimation commonly used. In terms of imaging algorithm, we compare different secondary range compression method and proposed compression method. We will use the range Doppler algorithm with different secondary range compression method to compare the imaging performance and the computational complexity with different secondary range compression method. In addition, we will also introduce the chirp scaling algorithm, and compare the imaging performance with the range Doppler algorithm. In the range cell migration correction, the range Doppler algorithm mainly uses the interpolator to correct the position of sampling point in the range and azimuth direction point by point, while the chirp scaling algorithm correct the position of sampling points with the same Doppler frequency by phase multiplication. The parameters of phase multiplication change with time, therefore, we have to evaluate the imaging performance and the computational complexity when we select the imaging algorithm. In the part of the Doppler centroid estimation algorithm, first of all, we will check the correctness of the Doppler centroid estimation in different scenarios and in different signal-to-noise, and then, we can determine whether the Doppler centroid estimation results can be used for imaging algorithms by analyzing the characteristics of the received signal.
|