The study on the ultra-clean graphene field effect transistor (FET) to improve the performance of the gene sensor

碩士 === 國立中央大學 === 能源工程研究所 === 107 === The pathogenesis of nasopharyngeal carcinoma is thought to be related to EBV (Epstein-Barr virus). Currently, anti-EBV antibody was widely used for early screening of NPC cases, and MRI and PET are used for evaluation of the lesion and also for monitoring whethe...

Full description

Bibliographic Details
Main Authors: Chin-Jung Hsu, 許晉榮
Other Authors: 蘇清源
Format: Others
Language:zh-TW
Published: 2018
Online Access:http://ndltd.ncl.edu.tw/handle/7kfbr5
Description
Summary:碩士 === 國立中央大學 === 能源工程研究所 === 107 === The pathogenesis of nasopharyngeal carcinoma is thought to be related to EBV (Epstein-Barr virus). Currently, anti-EBV antibody was widely used for early screening of NPC cases, and MRI and PET are used for evaluation of the lesion and also for monitoring whether there is local recurrence or distant metastasis, In addition, recent technology also utilizes polymerase chain reaction (PCR) in detection of plasma EBV DNA, which is thought to be an effective way to monitor the recurrence or metastasis of NPC. However, the current detection methods show several shortcomings respectively, such as the need for adequate volume of blood (for both anti-EBV antibody or EBV DNA), relatively high costs (MRI and PET), low detection sensitivity (anti-EBV antibody) and time-consuming (EBV DNA), as well as the expensive equipment (MRI、PET). Thus, it is important to find out a breakthrough sensing method to solve these issues. Graphene is a single atom layered material, which shows excellent electrical conductivity and its constituent atoms are exposed to the environment, allowing it been widely used in bio-/medical sensors, including DNA, protein, bacteria, nerve cells etc. The principle of this sensing mechanism is due to the significant charge transfer from adsorbed biomolecules to graphene. Because of the excellent conductivity of graphene, even the adsorption of a single molecule, resulting in an analytical response of the electrical signal. Therefore, this is beneficial for developing a highly sensitive sensing platform, where the sensing bio-specious and its concentration could be identified. The graphene-based sensing platform shows the unique advantages that it can achieve a label-free detection and rapid analysis due to the use of electrical signals. However, the graphene crystallinity, conductivity and surface cleanliness of graphene have a critical effect on sensing performance, and the current high purity and high-quality graphene preparation are still challenging. This study the cleanliness on graphene detection performance and will establish a field-effect transistor-type graphene DNA sensor. This study, using the ultra-clean surface is used to increase the conventional process by 95 % and the sensitivity is improved by 82 %. The error value is only 0.0272, which has excellent performance in specificity. and there is excellent performance in specificity, the maximum concentration of mismatch DNA (10 nM) Dirac point variation less than the minimum complementary DNA concentration (1 pM).