Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
碩士 === 國立交通大學 === 資訊科學與工程研究所 === 107 === Computed Tomography Scan (CT Scan) is one of the most important techniques in modern medical field, which can make projection views of an object in different angles by electromagnetic radiation without destructive test, then reconstruct inner structure of the...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2019
|
Online Access: | http://ndltd.ncl.edu.tw/handle/9m8fu9 |
id |
ndltd-TW-107NCTU5394111 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-107NCTU53941112019-11-26T05:16:52Z http://ndltd.ncl.edu.tw/handle/9m8fu9 Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network 以生成對抗網路內插稀疏正弦圖及斷層影像重建 Lin, Yun-Kai 林韵凱 碩士 國立交通大學 資訊科學與工程研究所 107 Computed Tomography Scan (CT Scan) is one of the most important techniques in modern medical field, which can make projection views of an object in different angles by electromagnetic radiation without destructive test, then reconstruct inner structure of the object through projection data. In sparse-view sinogram, the number of projection images taken is less than usual, but the quality of the reconstruction image is worse than full-view sinogram. In this study, we apply conditional Generative Adversarial Network (GAN) to synthesis full-view sinogram from sparse-view sinogram, which can generate high-quality reconstruction images. Ching, Yu-Tai 荊宇泰 2019 學位論文 ; thesis 20 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立交通大學 === 資訊科學與工程研究所 === 107 === Computed Tomography Scan (CT Scan) is one of the most important techniques in modern medical field, which can make projection views of an object in different angles by electromagnetic radiation without destructive test, then reconstruct inner structure of the object through projection data. In sparse-view sinogram, the number of projection images taken is less than usual, but the quality of the reconstruction image is worse than full-view sinogram.
In this study, we apply conditional Generative Adversarial Network (GAN) to synthesis full-view sinogram from sparse-view sinogram, which can generate high-quality reconstruction images.
|
author2 |
Ching, Yu-Tai |
author_facet |
Ching, Yu-Tai Lin, Yun-Kai 林韵凱 |
author |
Lin, Yun-Kai 林韵凱 |
spellingShingle |
Lin, Yun-Kai 林韵凱 Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
author_sort |
Lin, Yun-Kai |
title |
Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
title_short |
Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
title_full |
Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
title_fullStr |
Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
title_full_unstemmed |
Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
title_sort |
sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network |
publishDate |
2019 |
url |
http://ndltd.ncl.edu.tw/handle/9m8fu9 |
work_keys_str_mv |
AT linyunkai sparseviewsinograminterpolationandtomographyreconstructionusinggenerativeadversarialnetwork AT línyùnkǎi sparseviewsinograminterpolationandtomographyreconstructionusinggenerativeadversarialnetwork AT linyunkai yǐshēngchéngduìkàngwǎnglùnèichāxīshūzhèngxiántújíduàncéngyǐngxiàngzhòngjiàn AT línyùnkǎi yǐshēngchéngduìkàngwǎnglùnèichāxīshūzhèngxiántújíduàncéngyǐngxiàngzhòngjiàn |
_version_ |
1719295875767861248 |