Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network

碩士 === 國立交通大學 === 資訊科學與工程研究所 === 107 === Computed Tomography Scan (CT Scan) is one of the most important techniques in modern medical field, which can make projection views of an object in different angles by electromagnetic radiation without destructive test, then reconstruct inner structure of the...

Full description

Bibliographic Details
Main Authors: Lin, Yun-Kai, 林韵凱
Other Authors: Ching, Yu-Tai
Format: Others
Language:en_US
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/handle/9m8fu9
id ndltd-TW-107NCTU5394111
record_format oai_dc
spelling ndltd-TW-107NCTU53941112019-11-26T05:16:52Z http://ndltd.ncl.edu.tw/handle/9m8fu9 Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network 以生成對抗網路內插稀疏正弦圖及斷層影像重建 Lin, Yun-Kai 林韵凱 碩士 國立交通大學 資訊科學與工程研究所 107 Computed Tomography Scan (CT Scan) is one of the most important techniques in modern medical field, which can make projection views of an object in different angles by electromagnetic radiation without destructive test, then reconstruct inner structure of the object through projection data. In sparse-view sinogram, the number of projection images taken is less than usual, but the quality of the reconstruction image is worse than full-view sinogram. In this study, we apply conditional Generative Adversarial Network (GAN) to synthesis full-view sinogram from sparse-view sinogram, which can generate high-quality reconstruction images. Ching, Yu-Tai 荊宇泰 2019 學位論文 ; thesis 20 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 資訊科學與工程研究所 === 107 === Computed Tomography Scan (CT Scan) is one of the most important techniques in modern medical field, which can make projection views of an object in different angles by electromagnetic radiation without destructive test, then reconstruct inner structure of the object through projection data. In sparse-view sinogram, the number of projection images taken is less than usual, but the quality of the reconstruction image is worse than full-view sinogram. In this study, we apply conditional Generative Adversarial Network (GAN) to synthesis full-view sinogram from sparse-view sinogram, which can generate high-quality reconstruction images.
author2 Ching, Yu-Tai
author_facet Ching, Yu-Tai
Lin, Yun-Kai
林韵凱
author Lin, Yun-Kai
林韵凱
spellingShingle Lin, Yun-Kai
林韵凱
Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
author_sort Lin, Yun-Kai
title Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
title_short Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
title_full Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
title_fullStr Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
title_full_unstemmed Sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
title_sort sparse-view sinogram interpolation and tomography reconstruction using generative adversarial network
publishDate 2019
url http://ndltd.ncl.edu.tw/handle/9m8fu9
work_keys_str_mv AT linyunkai sparseviewsinograminterpolationandtomographyreconstructionusinggenerativeadversarialnetwork
AT línyùnkǎi sparseviewsinograminterpolationandtomographyreconstructionusinggenerativeadversarialnetwork
AT linyunkai yǐshēngchéngduìkàngwǎnglùnèichāxīshūzhèngxiántújíduàncéngyǐngxiàngzhòngjiàn
AT línyùnkǎi yǐshēngchéngduìkàngwǎnglùnèichāxīshūzhèngxiántújíduàncéngyǐngxiàngzhòngjiàn
_version_ 1719295875767861248