A Study on Static PE Malware Type Classification Using Machine Learning Techniques

碩士 === 國立成功大學 === 電腦與通信工程研究所 === 107 === This work aims to build an efficient, reliable and practical static malware classification system based on PE format files for Windows platform using machine learning techniques. With static analysis, feature extraction and anomaly detection can be done witho...

Full description

Bibliographic Details
Main Authors: Shao-HuaiZhang, 張少懷
Other Authors: Chu-Sing Yang
Format: Others
Language:zh-TW
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/handle/w64t7t
id ndltd-TW-107NCKU5652070
record_format oai_dc
spelling ndltd-TW-107NCKU56520702019-10-26T06:24:16Z http://ndltd.ncl.edu.tw/handle/w64t7t A Study on Static PE Malware Type Classification Using Machine Learning Techniques 基於機器學習技術之靜態PE格式惡意程式分類之研究 Shao-HuaiZhang 張少懷 碩士 國立成功大學 電腦與通信工程研究所 107 This work aims to build an efficient, reliable and practical static malware classification system based on PE format files for Windows platform using machine learning techniques. With static analysis, feature extraction and anomaly detection can be done without executing the binary sample. With the large-scale dataset, the trained model can get more knowledge and perform better in practice. After comparing a variety of machine learning models, the best one are chosen as the final classifier in this work. Different from previous works which predict whether malicious or non-malicious, this work aims to predict not only whether malicious or not but also which type of malware it is. With this advanced information about malware type, the user can estimate the risk or damage such a malware may bring. Apart from malware type prediction, this work can produce the probability of all possible malware types. This makes our work more valuable in practice. Chu-Sing Yang 楊竹星 2019 學位論文 ; thesis 54 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立成功大學 === 電腦與通信工程研究所 === 107 === This work aims to build an efficient, reliable and practical static malware classification system based on PE format files for Windows platform using machine learning techniques. With static analysis, feature extraction and anomaly detection can be done without executing the binary sample. With the large-scale dataset, the trained model can get more knowledge and perform better in practice. After comparing a variety of machine learning models, the best one are chosen as the final classifier in this work. Different from previous works which predict whether malicious or non-malicious, this work aims to predict not only whether malicious or not but also which type of malware it is. With this advanced information about malware type, the user can estimate the risk or damage such a malware may bring. Apart from malware type prediction, this work can produce the probability of all possible malware types. This makes our work more valuable in practice.
author2 Chu-Sing Yang
author_facet Chu-Sing Yang
Shao-HuaiZhang
張少懷
author Shao-HuaiZhang
張少懷
spellingShingle Shao-HuaiZhang
張少懷
A Study on Static PE Malware Type Classification Using Machine Learning Techniques
author_sort Shao-HuaiZhang
title A Study on Static PE Malware Type Classification Using Machine Learning Techniques
title_short A Study on Static PE Malware Type Classification Using Machine Learning Techniques
title_full A Study on Static PE Malware Type Classification Using Machine Learning Techniques
title_fullStr A Study on Static PE Malware Type Classification Using Machine Learning Techniques
title_full_unstemmed A Study on Static PE Malware Type Classification Using Machine Learning Techniques
title_sort study on static pe malware type classification using machine learning techniques
publishDate 2019
url http://ndltd.ncl.edu.tw/handle/w64t7t
work_keys_str_mv AT shaohuaizhang astudyonstaticpemalwaretypeclassificationusingmachinelearningtechniques
AT zhāngshǎohuái astudyonstaticpemalwaretypeclassificationusingmachinelearningtechniques
AT shaohuaizhang jīyújīqìxuéxíjìshùzhījìngtàipegéshìèyìchéngshìfēnlèizhīyánjiū
AT zhāngshǎohuái jīyújīqìxuéxíjìshùzhījìngtàipegéshìèyìchéngshìfēnlèizhīyánjiū
AT shaohuaizhang studyonstaticpemalwaretypeclassificationusingmachinelearningtechniques
AT zhāngshǎohuái studyonstaticpemalwaretypeclassificationusingmachinelearningtechniques
_version_ 1719279717569265664