A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps

碩士 === 國立中興大學 === 統計學研究所 === 107 === Estimating abundance based on a presence/absence map is an interesting and important issue in many research areas. This study adopts the kernel smoothing technique and uses the information around each cell of the presence/absence map to estimate the abundance of...

Full description

Bibliographic Details
Main Authors: William Gomez, 戈枚司
Other Authors: Wen-Han Hwang
Format: Others
Language:en_US
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5337003%22.&searchmode=basic
id ndltd-TW-107NCHU5337003
record_format oai_dc
spelling ndltd-TW-107NCHU53370032019-11-30T06:09:39Z http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5337003%22.&searchmode=basic A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps 利用出現與否地圖資料估計豐富度之局部概似估計法的模擬研究 William Gomez 戈枚司 碩士 國立中興大學 統計學研究所 107 Estimating abundance based on a presence/absence map is an interesting and important issue in many research areas. This study adopts the kernel smoothing technique and uses the information around each cell of the presence/absence map to estimate the abundance of the single cell. Based on a random Poisson model and a paired negative binomial model, we develop the corresponding local constant likelihood estimation method. The paper uses simulation studies to examine the effects of estimators and the effects of selected bandwidth values used in the local likelihood methods. We also use a real data set to demonstrate the use of the proposed method. Wen-Han Hwang 黃文瀚 2019 學位論文 ; thesis 42 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 統計學研究所 === 107 === Estimating abundance based on a presence/absence map is an interesting and important issue in many research areas. This study adopts the kernel smoothing technique and uses the information around each cell of the presence/absence map to estimate the abundance of the single cell. Based on a random Poisson model and a paired negative binomial model, we develop the corresponding local constant likelihood estimation method. The paper uses simulation studies to examine the effects of estimators and the effects of selected bandwidth values used in the local likelihood methods. We also use a real data set to demonstrate the use of the proposed method.
author2 Wen-Han Hwang
author_facet Wen-Han Hwang
William Gomez
戈枚司
author William Gomez
戈枚司
spellingShingle William Gomez
戈枚司
A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps
author_sort William Gomez
title A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps
title_short A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps
title_full A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps
title_fullStr A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps
title_full_unstemmed A Simulation Study on Local Likelihood Methods for Abundance Estimation from Presence/Absence Maps
title_sort simulation study on local likelihood methods for abundance estimation from presence/absence maps
publishDate 2019
url http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5337003%22.&searchmode=basic
work_keys_str_mv AT williamgomez asimulationstudyonlocallikelihoodmethodsforabundanceestimationfrompresenceabsencemaps
AT gēméisī asimulationstudyonlocallikelihoodmethodsforabundanceestimationfrompresenceabsencemaps
AT williamgomez lìyòngchūxiànyǔfǒudetúzīliàogūjìfēngfùdùzhījúbùgàishìgūjìfǎdemónǐyánjiū
AT gēméisī lìyòngchūxiànyǔfǒudetúzīliàogūjìfēngfùdùzhījúbùgàishìgūjìfǎdemónǐyánjiū
AT williamgomez simulationstudyonlocallikelihoodmethodsforabundanceestimationfrompresenceabsencemaps
AT gēméisī simulationstudyonlocallikelihoodmethodsforabundanceestimationfrompresenceabsencemaps
_version_ 1719300438579216384