Flexible electrothermal film heaters based on nanocarbon /PEDOT : PSS composites

碩士 === 國立中正大學 === 化學工程研究所 === 107 === Electrothermal film heater has been widely used in the broad area including vehicle defrosting windows, thermal therapy device, heating element. Among them, flexible or stretchable electrothermal film heater has attracted great attention. Conducting polymer (e....

Full description

Bibliographic Details
Main Authors: HSIEH, YU-LUN, 謝雨倫
Other Authors: 陳靜誼
Format: Others
Language:zh-TW
Published: 2019
Online Access:http://ndltd.ncl.edu.tw/handle/67d975
Description
Summary:碩士 === 國立中正大學 === 化學工程研究所 === 107 === Electrothermal film heater has been widely used in the broad area including vehicle defrosting windows, thermal therapy device, heating element. Among them, flexible or stretchable electrothermal film heater has attracted great attention. Conducting polymer (e.g. PEDOT : PSS) is one of the most commonly used conducting material for flexible electrothermal film heater. In this study, to enhance the conductivity of conducting polymer and improve the performance of electrothermal film heater, four different kinds of nanocarbon materials, including commercial carbon black (model: Super P), coke supplied by CPC Corporation, Taiwan (model: CPCA), carbon nanocapsules (model: CNC, provided by Nano lab, CHE, NCCU), and carbon nanofiber (CNT, Lab-made) are introduced to mix with conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS, model: PH1000) to form the composite as the conductive ink. On the other hand, stretchable thermoplastic polyurethane (TPU, model: 1185A) elastic nanofiber mat is fabricated by electrospinning method, which is used as the substrate. Then, the flexible electrothermal film heater is prepared by spray coating of the conductive ink on the TPU nanofiber mat. The electrothermal performances correlated with four different carbon materials are investigated in terms of applied voltage, response time, conductivity, and their basic carbon properties. The results show the CNC/PEDOT : PSS (40 mg/1.5 ml) coated TPU film has higher conductivity and better electrothermal property compared to the PEDOT : PSS and other carbon materials/PEDOT:PSS coated films. The average temperature of 88.7 °C can be reached at voltage of 10 V and maintained at around 50 °C under 30% stretch deformation. Moreover, the flexible electrothermal film heater can remain its good heating performances under repeatedly bending test for 5 times and long-term test for 1 hour. Finally, the flexible electrothermal film heater has been demonstrated to has good electrothermal property in two applications: wearable thin-film heaters and water heater. These results provide clear evidence for its potential and widespread applications in the future.