SWCNT Decorate Non-enzymatic Glucose Sensor based on Cu2O Surface Modification of ZnO Nanorods/Graphene composites

碩士 === 國立雲林科技大學 === 電子工程系 === 106 === The non-enzymatic glucose sensor was successfully prepared in this research which the single-wall carbon nanotubes (SWCNTs) were wrapped with Nafion to enhance the sensitivity of sensor based on the copper(I) oxide (Cu2O) surface modification of zinc oxide nanor...

Full description

Bibliographic Details
Main Authors: SU, WEI-RONG, 蘇威榕
Other Authors: CHEN, HSI-CHAO
Format: Others
Language:zh-TW
Published: 2018
Online Access:http://ndltd.ncl.edu.tw/handle/k8368t
Description
Summary:碩士 === 國立雲林科技大學 === 電子工程系 === 106 === The non-enzymatic glucose sensor was successfully prepared in this research which the single-wall carbon nanotubes (SWCNTs) were wrapped with Nafion to enhance the sensitivity of sensor based on the copper(I) oxide (Cu2O) surface modification of zinc oxide nanorod (ZnO NR)/Graphene composites on ITO glass. The experimental procedure of this research has four steps: First, the different sputtering time was used to deposit the ZnO seed layer, and then will be synthesis ZnO NR by hydrothermal. The morphology of ZnO NR was checked by scanning electron microscope (SEM). Secondly, the optimal cupreous time of Cu2O on the ZnO NR would be verified by electrochemistry with the different concentration of glucose. Thirdly, the SWCNTs wrapped with Nafion was dropped to Cu2O /ZnO NR to increase the catching ability of the glucose and checked by electrochemistry. Lastly, graphene would be prepared on the ITO glass and then fabricated the Cu2O surface modification of ZnO NR/Graphene composites. In the electrochemistry measurement, 0.1M NaOH was used as the electrolyte, and there were four concentrations of glucose: 0, 100, 150 and 200 mg dL-1. The electrochemical characteristics of the sensors were investigated by cyclic voltammetry (CV). The results showed the modified electrodes of Cu2O/ZnO NR had a linear response to glucose concentration and the maximum concentration could reach to 200 mg/dL with the sensitivity of 0.6207 μA mg-1 dL cm-2(about 11.17 μA mM-1 cm-2). Because the SWCNTs wrapped with Nafion could enhance the capturing ability of glucose checked by the CVs curve of electrochemistry. Since, the modified electrodes of SWCNT/Cu2O/ZnO NR has the optimal linear range from 0 to 200 mg/dL and good sensitivity of 16.1 μA mg-1 dL cm-2(289.8 μA mM-1 cm-2). Anyway, the SWCNTs wrapped with Nafion could increase the sensitivity of glucose sensor. The chronoamperometry (CA) is a precision real time response of the glucose sensor. So the graphene was fabricated on the ITO glass to adhesive on the SWCNTs/Cu2O/ZnO NR/Graphene composites as the glucose sensor, then the sensor would be tested by the CA method with the increasing the glucose concentration. The calibration curve of glucose sensor has two linear ranges: 0-5.556 and 5.556-11.111 mM and have the sensitivity of 466.1 and 203.1 μA mM-1 cm-2, respectively. The addition of graphene could increase the sensitivity at low concentration and reduce the response time (< 2 s) for the SWCNTs/Cu2O/ZnO NR glucose sensor.