Prepared Pd-Au/TiO2-WO3 Nanoparticle Applied in Photoreduction of CO2 into CO and CH4
碩士 === 靜宜大學 === 應用化學系 === 106 === This study presents Pd-Au/TiO2-WO3 nanoparticle prepared by a hydrothermal and sol-gel method as a CO2 conversion photocatalysts. The catalysts were characterized by X-ray diffraction (XRD), Scan electron microscope (SEM), Tunneling electron microscope (TEM), XPS, B...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2018
|
Online Access: | http://ndltd.ncl.edu.tw/handle/jtvh68 |
Summary: | 碩士 === 靜宜大學 === 應用化學系 === 106 === This study presents Pd-Au/TiO2-WO3 nanoparticle prepared by a hydrothermal and sol-gel method as a CO2 conversion photocatalysts. The catalysts were characterized by X-ray diffraction (XRD), Scan electron microscope (SEM), Tunneling electron microscope (TEM), XPS, BET, UV-visible and Photoluminescence (PL) instruments. The appropriate amounts of Pd and Au on TiO2-WO3 composites exhibited enhanced photocatalytic activity for CO2 reduction compared with commercial TiO2 (P25). It showed the photocatalytic CH4 production rate (39.1 μmol g-1 h-1) was 100 fold that of TiO2 (P25); moreover, a large amount of CO was produced (at a rate of 271.3 μmol g-1 h-1) was 300 fold that of TiO2 (P25). The significantly improved photocatalytic activity was not only due to the increased specific surface area (72.9 m2g-1) but also UV-vis showed a remarkable enhancement of light absorption. It owes to the incorporation Pd-Au with TiO2 the visiblelight active the UV light-responsive for increased solar energy utilization. Furthermore, PL spectra revealed that the Pd-Au content can influence the charge transfer efficiency of the Pd-Au/TiO2-WO3 composites. The quantum yield of CH4 production was calculated as 1.05 %. A CO2 reduction reaction mechanism was proposed on Pd-Au/TiO2-WO3. This study can bring new insights into designing TiO2 nanostructures for applications such as solar energy conversion and storage.
|
---|