Automatic IR-Drop ECO Using Machine Learning
碩士 === 國立臺灣大學 === 電子工程學研究所 === 106 === This thesis proposes an automatic flow to repair IR-drop violations by Engineering Change Order (ECO). Our ECO technique provides cell move and downsize solutions. We use machine learning to predict IR-drop so that we can prevent over-fixing. We use a commer...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2018
|
Online Access: | http://ndltd.ncl.edu.tw/handle/9t66pd |
id |
ndltd-TW-106NTU05428070 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-106NTU054280702019-07-25T04:46:48Z http://ndltd.ncl.edu.tw/handle/9t66pd Automatic IR-Drop ECO Using Machine Learning 使用機器學習之自動化電路壓降工程修改命令 Heng-Yi Lin 林恆毅 碩士 國立臺灣大學 電子工程學研究所 106 This thesis proposes an automatic flow to repair IR-drop violations by Engineering Change Order (ECO). Our ECO technique provides cell move and downsize solutions. We use machine learning to predict IR-drop so that we can prevent over-fixing. We use a commercial tool to predict timing so that this is a timing-aware ECO. With the above two predictions, we propose a novel multi-round bipartite matching to optimize the ECO resource utilization. Experimental results show that for a 5M gate real design, our proposed method repairs 2,504 (22%) violation cells out of the original 11,555 violation cells and repairs 36,272 mV (37%) total excessive IR out of the original 98,674 mV total excessive IR. We are able to perform ECO on seven thousand cells within 13 hours, so our ECO flow is practical and can be applied to large industrial designs. 李建模 2018 學位論文 ; thesis 43 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣大學 === 電子工程學研究所 === 106 === This thesis proposes an automatic flow to repair IR-drop violations by Engineering Change Order (ECO). Our ECO technique provides cell move and downsize solutions. We use machine learning to predict IR-drop so that we can prevent over-fixing. We use a commercial tool to predict timing so that this is a timing-aware ECO. With the above two predictions, we propose a novel multi-round bipartite matching to optimize the ECO resource utilization. Experimental results show that for a 5M gate real design, our proposed method repairs 2,504 (22%) violation cells out of the original 11,555 violation cells and repairs 36,272 mV (37%) total excessive IR out of the original 98,674 mV total excessive IR. We are able to perform ECO on seven thousand cells within 13 hours, so our ECO flow is practical and can be applied to large industrial designs.
|
author2 |
李建模 |
author_facet |
李建模 Heng-Yi Lin 林恆毅 |
author |
Heng-Yi Lin 林恆毅 |
spellingShingle |
Heng-Yi Lin 林恆毅 Automatic IR-Drop ECO Using Machine Learning |
author_sort |
Heng-Yi Lin |
title |
Automatic IR-Drop ECO Using Machine Learning |
title_short |
Automatic IR-Drop ECO Using Machine Learning |
title_full |
Automatic IR-Drop ECO Using Machine Learning |
title_fullStr |
Automatic IR-Drop ECO Using Machine Learning |
title_full_unstemmed |
Automatic IR-Drop ECO Using Machine Learning |
title_sort |
automatic ir-drop eco using machine learning |
publishDate |
2018 |
url |
http://ndltd.ncl.edu.tw/handle/9t66pd |
work_keys_str_mv |
AT hengyilin automaticirdropecousingmachinelearning AT línhéngyì automaticirdropecousingmachinelearning AT hengyilin shǐyòngjīqìxuéxízhīzìdònghuàdiànlùyājiànggōngchéngxiūgǎimìnglìng AT línhéngyì shǐyòngjīqìxuéxízhīzìdònghuàdiànlùyājiànggōngchéngxiūgǎimìnglìng |
_version_ |
1719230029442842624 |