Automatic IR-Drop ECO Using Machine Learning

碩士 === 國立臺灣大學 === 電子工程學研究所 === 106 === This thesis proposes an automatic flow to repair IR-drop violations by Engineering Change Order (ECO). Our ECO technique provides cell move and downsize solutions. We use machine learning to predict IR-drop so that we can prevent over-fixing. We use a commer...

Full description

Bibliographic Details
Main Authors: Heng-Yi Lin, 林恆毅
Other Authors: 李建模
Format: Others
Language:en_US
Published: 2018
Online Access:http://ndltd.ncl.edu.tw/handle/9t66pd
id ndltd-TW-106NTU05428070
record_format oai_dc
spelling ndltd-TW-106NTU054280702019-07-25T04:46:48Z http://ndltd.ncl.edu.tw/handle/9t66pd Automatic IR-Drop ECO Using Machine Learning 使用機器學習之自動化電路壓降工程修改命令 Heng-Yi Lin 林恆毅 碩士 國立臺灣大學 電子工程學研究所 106 This thesis proposes an automatic flow to repair IR-drop violations by Engineering Change Order (ECO). Our ECO technique provides cell move and downsize solutions. We use machine learning to predict IR-drop so that we can prevent over-fixing. We use a commercial tool to predict timing so that this is a timing-aware ECO. With the above two predictions, we propose a novel multi-round bipartite matching to optimize the ECO resource utilization. Experimental results show that for a 5M gate real design, our proposed method repairs 2,504 (22%) violation cells out of the original 11,555 violation cells and repairs 36,272 mV (37%) total excessive IR out of the original 98,674 mV total excessive IR. We are able to perform ECO on seven thousand cells within 13 hours, so our ECO flow is practical and can be applied to large industrial designs. 李建模 2018 學位論文 ; thesis 43 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣大學 === 電子工程學研究所 === 106 === This thesis proposes an automatic flow to repair IR-drop violations by Engineering Change Order (ECO). Our ECO technique provides cell move and downsize solutions. We use machine learning to predict IR-drop so that we can prevent over-fixing. We use a commercial tool to predict timing so that this is a timing-aware ECO. With the above two predictions, we propose a novel multi-round bipartite matching to optimize the ECO resource utilization. Experimental results show that for a 5M gate real design, our proposed method repairs 2,504 (22%) violation cells out of the original 11,555 violation cells and repairs 36,272 mV (37%) total excessive IR out of the original 98,674 mV total excessive IR. We are able to perform ECO on seven thousand cells within 13 hours, so our ECO flow is practical and can be applied to large industrial designs.
author2 李建模
author_facet 李建模
Heng-Yi Lin
林恆毅
author Heng-Yi Lin
林恆毅
spellingShingle Heng-Yi Lin
林恆毅
Automatic IR-Drop ECO Using Machine Learning
author_sort Heng-Yi Lin
title Automatic IR-Drop ECO Using Machine Learning
title_short Automatic IR-Drop ECO Using Machine Learning
title_full Automatic IR-Drop ECO Using Machine Learning
title_fullStr Automatic IR-Drop ECO Using Machine Learning
title_full_unstemmed Automatic IR-Drop ECO Using Machine Learning
title_sort automatic ir-drop eco using machine learning
publishDate 2018
url http://ndltd.ncl.edu.tw/handle/9t66pd
work_keys_str_mv AT hengyilin automaticirdropecousingmachinelearning
AT línhéngyì automaticirdropecousingmachinelearning
AT hengyilin shǐyòngjīqìxuéxízhīzìdònghuàdiànlùyājiànggōngchéngxiūgǎimìnglìng
AT línhéngyì shǐyòngjīqìxuéxízhīzìdònghuàdiànlùyājiànggōngchéngxiūgǎimìnglìng
_version_ 1719230029442842624