Power commuting additive maps on rank-k linear transformations

碩士 === 國立彰化師範大學 === 數學系 === 106 === Let M be a right vector space over a division ring D and let End ) ( D M be the ring of all D-linear transformations from M into M . Suppose that R is a dense subring of End ) ( D M consisting of finite rank transformations and RRf : is an additive map satisfying...

Full description

Bibliographic Details
Main Authors: Chou, Ping-Han, 周秉漢
Other Authors: Liu, Cheng-Kai
Format: Others
Language:en_US
Published: 2018
Online Access:http://ndltd.ncl.edu.tw/handle/yhr8a7
id ndltd-TW-106NCUE5479003
record_format oai_dc
spelling ndltd-TW-106NCUE54790032019-05-30T03:57:14Z http://ndltd.ncl.edu.tw/handle/yhr8a7 Power commuting additive maps on rank-k linear transformations 在秩維 k 的線性變換的冪次交換性函數 Chou, Ping-Han 周秉漢 碩士 國立彰化師範大學 數學系 106 Let M be a right vector space over a division ring D and let End ) ( D M be the ring of all D-linear transformations from M into M . Suppose that R is a dense subring of End ) ( D M consisting of finite rank transformations and RRf : is an additive map satisfying ) ()( )()( x fxxxf xmxm  for every rank-k transformation R x , where k is a fixed integer with D Mk dim1  and 1)( xm is an integer depending on x. Then there exist ) (DZ  and an additive map I DZR ) (:   such that ) ()( x xxf   for all R x , where I denotes the identity transformation on M . Liu, Cheng-Kai 劉承楷 2018 學位論文 ; thesis 25 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立彰化師範大學 === 數學系 === 106 === Let M be a right vector space over a division ring D and let End ) ( D M be the ring of all D-linear transformations from M into M . Suppose that R is a dense subring of End ) ( D M consisting of finite rank transformations and RRf : is an additive map satisfying ) ()( )()( x fxxxf xmxm  for every rank-k transformation R x , where k is a fixed integer with D Mk dim1  and 1)( xm is an integer depending on x. Then there exist ) (DZ  and an additive map I DZR ) (:   such that ) ()( x xxf   for all R x , where I denotes the identity transformation on M .
author2 Liu, Cheng-Kai
author_facet Liu, Cheng-Kai
Chou, Ping-Han
周秉漢
author Chou, Ping-Han
周秉漢
spellingShingle Chou, Ping-Han
周秉漢
Power commuting additive maps on rank-k linear transformations
author_sort Chou, Ping-Han
title Power commuting additive maps on rank-k linear transformations
title_short Power commuting additive maps on rank-k linear transformations
title_full Power commuting additive maps on rank-k linear transformations
title_fullStr Power commuting additive maps on rank-k linear transformations
title_full_unstemmed Power commuting additive maps on rank-k linear transformations
title_sort power commuting additive maps on rank-k linear transformations
publishDate 2018
url http://ndltd.ncl.edu.tw/handle/yhr8a7
work_keys_str_mv AT choupinghan powercommutingadditivemapsonrankklineartransformations
AT zhōubǐnghàn powercommutingadditivemapsonrankklineartransformations
AT choupinghan zàizhìwéikdexiànxìngbiànhuàndemìcìjiāohuànxìnghánshù
AT zhōubǐnghàn zàizhìwéikdexiànxìngbiànhuàndemìcìjiāohuànxìnghánshù
_version_ 1719195729975574528