On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)

碩士 === 亞洲大學 === 資訊工程學系碩士在職專班 === 105 === This thesisaims to develop an infinite impulse filter synthesis method by using gradient decent algorithm for minimizing L2-sensitivity measure subject to minimal pole sensitivity measure. Based on the derived result of the so called sparse normal-form filter...

Full description

Bibliographic Details
Main Authors: TSIA, WEN-SHIANG, 蔡文翔
Other Authors: KO, HSIEN-JU
Format: Others
Language:zh-TW
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/02274828597972498391
id ndltd-TW-105THMU1396024
record_format oai_dc
spelling ndltd-TW-105THMU13960242017-11-12T04:38:57Z http://ndltd.ncl.edu.tw/handle/02274828597972498391 On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft) 以梯度陡降法同時將極點與L2靈敏度極小化之有限精確度數位濾波器最佳化實現 TSIA, WEN-SHIANG 蔡文翔 碩士 亞洲大學 資訊工程學系碩士在職專班 105 This thesisaims to develop an infinite impulse filter synthesis method by using gradient decent algorithm for minimizing L2-sensitivity measure subject to minimal pole sensitivity measure. Based on the derived result of the so called sparse normal-form filter realization, the optimal filter structure can be obtained by considering the L2-sensitivity minimization problem subject to the pole-sensitivity function which is summing up all unweighted pole sensitivity measure. By the technique of trace inequalities, a mathematically tractable cost function can be minimized by using gradient decent algorithm to adjust the degree of freedom in the cost function for the minimization problem. Finally, numerical examples are performed to illustrate the effectiveness of the proposed approach. KO, HSIEN-JU CHEN, JHAO-NAO 柯賢儒 陳兆南 2017 學位論文 ; thesis 44 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 亞洲大學 === 資訊工程學系碩士在職專班 === 105 === This thesisaims to develop an infinite impulse filter synthesis method by using gradient decent algorithm for minimizing L2-sensitivity measure subject to minimal pole sensitivity measure. Based on the derived result of the so called sparse normal-form filter realization, the optimal filter structure can be obtained by considering the L2-sensitivity minimization problem subject to the pole-sensitivity function which is summing up all unweighted pole sensitivity measure. By the technique of trace inequalities, a mathematically tractable cost function can be minimized by using gradient decent algorithm to adjust the degree of freedom in the cost function for the minimization problem. Finally, numerical examples are performed to illustrate the effectiveness of the proposed approach.
author2 KO, HSIEN-JU
author_facet KO, HSIEN-JU
TSIA, WEN-SHIANG
蔡文翔
author TSIA, WEN-SHIANG
蔡文翔
spellingShingle TSIA, WEN-SHIANG
蔡文翔
On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)
author_sort TSIA, WEN-SHIANG
title On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)
title_short On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)
title_full On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)
title_fullStr On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)
title_full_unstemmed On Pole and L2-Sensitivity Minimization Using Gradient Decent Algorithm for the Finite Precision Digital Filter Implementations (Draft)
title_sort on pole and l2-sensitivity minimization using gradient decent algorithm for the finite precision digital filter implementations (draft)
publishDate 2017
url http://ndltd.ncl.edu.tw/handle/02274828597972498391
work_keys_str_mv AT tsiawenshiang onpoleandl2sensitivityminimizationusinggradientdecentalgorithmforthefiniteprecisiondigitalfilterimplementationsdraft
AT càiwénxiáng onpoleandl2sensitivityminimizationusinggradientdecentalgorithmforthefiniteprecisiondigitalfilterimplementationsdraft
AT tsiawenshiang yǐtīdùdǒujiàngfǎtóngshíjiāngjídiǎnyǔl2língmǐndùjíxiǎohuàzhīyǒuxiànjīngquèdùshùwèilǜbōqìzuìjiāhuàshíxiàn
AT càiwénxiáng yǐtīdùdǒujiàngfǎtóngshíjiāngjídiǎnyǔl2língmǐndùjíxiǎohuàzhīyǒuxiànjīngquèdùshùwèilǜbōqìzuìjiāhuàshíxiàn
_version_ 1718561758404149248