Synthesis and Applications of Luminescent Noble Metal Nanoclusters and Gold Hybrid Nanomaterials

博士 === 國立臺灣大學 === 化學研究所 === 105 === Gold nanomaterials (Au NMs) and luminescent noble metal nanoclusters (NCs) exhibit great potential for sensing, imaging, characterization and biorecognition, due to their high selectivity, sensitivity and because of unique optical and catalytic properties. This th...

Full description

Bibliographic Details
Main Authors: Hsiang-Yu Chang, 張翔喻
Other Authors: Huang-Tsung Chang
Format: Others
Language:en_US
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/06480638804593872031
Description
Summary:博士 === 國立臺灣大學 === 化學研究所 === 105 === Gold nanomaterials (Au NMs) and luminescent noble metal nanoclusters (NCs) exhibit great potential for sensing, imaging, characterization and biorecognition, due to their high selectivity, sensitivity and because of unique optical and catalytic properties. This thesis focuses on the preparation, characterization, and application of Au NMs and Au NCs. In Chapter 1, the background of Au NMs, Au NCs and the principle of laser desorption/ionization techniques of mass spectrometry are described. In Chapter 2, the details of our work using HgTe nanostructure-based matrices for SALDI-MS for the analyses of polyethylene glycol (PEG) derivatives as well as thiol-PEG-modified gold nanoparticles (PEGAu NPs) is explained. This approach allows the determination of PEG (molecular weights: 42,000 Da), PEG-Au NP species functional groups (e.g., carboxymethyl, amine, biotin), and biotinylated-PEG-Au NPs (biotin-PEG-Au NPs) to study the biotin-avidin biorecognition. We also prepared the antimicrobial gold/silver-tellurium nanostructures (Au/Ag-Te NSs) which possessed superior antimicrobial activity toward Escherichia coli (E. coli), Salmonella enterica serovar Enteritidis (S. enteritidis), and Staphylococcus aureus (S. aureus) as described in Chapter 3. In Chapter 4, the effect of controlled ligand density of 11-mercaptoundecanoic acid (11-MUA) on the gold nanodots (Au NDs) is described. We could achieve the detection of total inorganic and organic mercury ions in complex biological urine and plasma samples, as well as in fish sample. Photoluminescent L-cysteine (Cys)-capped gold nanoclusters (CysAu NCs) via NaBH4-mediated reduction of aggregated coordination polymers (supramolecules) of [CysAu(I)]n were also synthesized as mention in Chapter 5. Based on these studies, we demonstrated that the photoluminescence and structural properties of Au NCs are mediated by the intermolecular forces of thiol ligands. Accordingly, we have demonstrated that novel SALDI-MS approach allows rapid detection of macromolecules, and suggested that Au/Ag−Te NSs holds great potential as effective antimicrobial drugs. We also developed nanosensor for the rapid determination of total Hg concentration in real sample. Finally, our study also affords insights into the bottom-up synthesis of photoluminescent Au NCs from thiol-ligandAu(I) complexes and supramolecules.