Summary: | 碩士 === 國立臺灣師範大學 === 運動競技學系 === 105 === Purpose: To investigate if IMU is suitable to measure the biomechanical changes of foot after fatigue and find the parameter of foot fatigue index when landing. Methods: There were 12 female subjects recruited in this study. Foot kinematic parameters were collected by accelerometer, gyro sensor, and 3D motion analysis system. Pearson’s correlation coefficient was used to assess the correlation between the data of angular velocity collected from gyro sensor and motion analysis system, and the Wilcoxon Signed Ranked Test was used to compare the data before and after a fatigue protocol. Results: There were significant correlations between the data of angular velocity collected from gyro sensor and motion analysis system. When landing, ankle abduction angle and angular velocity in the eversion increased significantly after a fatigue protocol, and the acceleration changed from anterior to posterior after a fatigue protocol. The first peak value of acceleration after landing was significantly increased in lateral axis after a fatigue protocol. The first peak value of angular velocity in the eversion after landing was significantly increased, and it was also changed in dorsiflexion/ plantarflexion and adduction/abduction, but not significantly after a fatigue protocol. Inclination angle in the eversion was significantly increased, and the others were changed but not significantly after a fatigue protocol. Conclusion: The IMU on the foot could detect the biomechanical changes after fatigue, and the changes of angular velocity in eversion which is detected from IMU could be used as one of the parameter of foot fatigue index.
|