Growth of GaN thin film and AlGaN-based quantum well structure by plasma-assisted molecular beam epitaxy for optoelectronics application
博士 === 國立中山大學 === 物理學系研究所 === 105 === In this dissertation, we discuss growth of GaN thin film and AlGaN-based quantum well structure by plasma-assisted molecular beam epitaxy for optoelectronics application. At the first, we grow non-polar plane GaN thin film on the low lattice mismatch substrate....
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2017
|
Online Access: | http://ndltd.ncl.edu.tw/handle/8pa8ub |
Summary: | 博士 === 國立中山大學 === 物理學系研究所 === 105 === In this dissertation, we discuss growth of GaN thin film and AlGaN-based quantum well structure by plasma-assisted molecular beam epitaxy for optoelectronics application. At the first, we grow non-polar plane GaN thin film on the low lattice mismatch substrate. We grow M-plane GaN on ZnO micro-rods (1010) under Ga-rich growth condition which was confirmed by TEM and polarization-dependent photoluminescence. We found that the ZnGa2O4 compound was formed at the M-plane hetero-interface which induce stacking fault defect in the epilayer. We demonstrated that the M-plane ZnO micro-rod surface can be used as an alternative substrate to grow high quality M-plane GaN epi-layers. We also grow M-plane GaN on the -LiGaO2 (100) and derive M-plane GaN Hooke’s law. By the TEM and Hooke’s law, we estimate anisotropic stress in the M-plane GaN epilayer.
In the growth of AlGaN-based quantum well, at the first, we grow AlxGa1-xN/GaN multi-quantum wells on the GaN template substrate. We find that growth of AlxGa1-xN/GaN multi-quantum wells as buffer layer can improve GaN epilayer quality. We also grow AlxGa1-xN/AlyGa1-yN multi-quantum wells on the GaN template. We find that the interlayer LT-AlN layer can avoid AlxGa1-xN/AlyGa1-yN multi-quantum well structure cracking and improve AlxGa1-xN/AlyGa1-yN multi-quantum wells structure.
|
---|