Using a Two-stage Model to Estimate the Loss Given Default Distribution
碩士 === 國立東華大學 === 應用數學系 === 105 === We propose a new two-stage model to estimate the loss given default (LGD) distribution. The first-stage model is the logistic regression model used to estimate probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is the right-tail ext...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Published: |
2017
|
Online Access: | http://ndltd.ncl.edu.tw/handle/77591969479318458784 |
id |
ndltd-TW-105NDHU5507008 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-105NDHU55070082017-11-10T04:25:29Z http://ndltd.ncl.edu.tw/handle/77591969479318458784 Using a Two-stage Model to Estimate the Loss Given Default Distribution 使用二階段模型估計違約損失率分配 Fong-Sian Cing 馮獻慶 碩士 國立東華大學 應用數學系 105 We propose a new two-stage model to estimate the loss given default (LGD) distribution. The first-stage model is the logistic regression model used to estimate probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is the right-tail extended beta model applied to generate the distribution of LGD between (0,1) and probability of LGD equal to 1. To implement the newly proposed two-stage model, we collect a sample of 4962 defaulted debts from Moody’s Default and Recovery Database. The empirical results show that the newly proposed two-stage model can generate the accurate LGD distribution estimate. Thus, it is useful for studying the LGD distribution. Chih-Kang Chu Ruey-Ching Hwang 朱至剛 黃瑞卿 2017 學位論文 ; thesis 22 |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立東華大學 === 應用數學系 === 105 === We propose a new two-stage model to estimate the loss given default (LGD)
distribution. The first-stage model is the logistic regression model used to estimate
probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is
the right-tail extended beta model applied to generate the distribution of LGD between
(0,1) and probability of LGD equal to 1. To implement the newly proposed two-stage
model, we collect a sample of 4962 defaulted debts from Moody’s Default and
Recovery Database. The empirical results show that the newly proposed two-stage
model can generate the accurate LGD distribution estimate. Thus, it is useful for
studying the LGD distribution.
|
author2 |
Chih-Kang Chu |
author_facet |
Chih-Kang Chu Fong-Sian Cing 馮獻慶 |
author |
Fong-Sian Cing 馮獻慶 |
spellingShingle |
Fong-Sian Cing 馮獻慶 Using a Two-stage Model to Estimate the Loss Given Default Distribution |
author_sort |
Fong-Sian Cing |
title |
Using a Two-stage Model to Estimate the Loss Given Default Distribution |
title_short |
Using a Two-stage Model to Estimate the Loss Given Default Distribution |
title_full |
Using a Two-stage Model to Estimate the Loss Given Default Distribution |
title_fullStr |
Using a Two-stage Model to Estimate the Loss Given Default Distribution |
title_full_unstemmed |
Using a Two-stage Model to Estimate the Loss Given Default Distribution |
title_sort |
using a two-stage model to estimate the loss given default distribution |
publishDate |
2017 |
url |
http://ndltd.ncl.edu.tw/handle/77591969479318458784 |
work_keys_str_mv |
AT fongsiancing usingatwostagemodeltoestimatethelossgivendefaultdistribution AT féngxiànqìng usingatwostagemodeltoestimatethelossgivendefaultdistribution AT fongsiancing shǐyòngèrjiēduànmóxínggūjìwéiyuēsǔnshīlǜfēnpèi AT féngxiànqìng shǐyòngèrjiēduànmóxínggūjìwéiyuēsǔnshīlǜfēnpèi |
_version_ |
1718560740539891712 |