Using a Two-stage Model to Estimate the Loss Given Default Distribution

碩士 === 國立東華大學 === 應用數學系 === 105 === We propose a new two-stage model to estimate the loss given default (LGD) distribution. The first-stage model is the logistic regression model used to estimate probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is the right-tail ext...

Full description

Bibliographic Details
Main Authors: Fong-Sian Cing, 馮獻慶
Other Authors: Chih-Kang Chu
Format: Others
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/77591969479318458784
id ndltd-TW-105NDHU5507008
record_format oai_dc
spelling ndltd-TW-105NDHU55070082017-11-10T04:25:29Z http://ndltd.ncl.edu.tw/handle/77591969479318458784 Using a Two-stage Model to Estimate the Loss Given Default Distribution 使用二階段模型估計違約損失率分配 Fong-Sian Cing 馮獻慶 碩士 國立東華大學 應用數學系 105 We propose a new two-stage model to estimate the loss given default (LGD) distribution. The first-stage model is the logistic regression model used to estimate probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is the right-tail extended beta model applied to generate the distribution of LGD between (0,1) and probability of LGD equal to 1. To implement the newly proposed two-stage model, we collect a sample of 4962 defaulted debts from Moody’s Default and Recovery Database. The empirical results show that the newly proposed two-stage model can generate the accurate LGD distribution estimate. Thus, it is useful for studying the LGD distribution. Chih-Kang Chu Ruey-Ching Hwang 朱至剛 黃瑞卿 2017 學位論文 ; thesis 22
collection NDLTD
format Others
sources NDLTD
description 碩士 === 國立東華大學 === 應用數學系 === 105 === We propose a new two-stage model to estimate the loss given default (LGD) distribution. The first-stage model is the logistic regression model used to estimate probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is the right-tail extended beta model applied to generate the distribution of LGD between (0,1) and probability of LGD equal to 1. To implement the newly proposed two-stage model, we collect a sample of 4962 defaulted debts from Moody’s Default and Recovery Database. The empirical results show that the newly proposed two-stage model can generate the accurate LGD distribution estimate. Thus, it is useful for studying the LGD distribution.
author2 Chih-Kang Chu
author_facet Chih-Kang Chu
Fong-Sian Cing
馮獻慶
author Fong-Sian Cing
馮獻慶
spellingShingle Fong-Sian Cing
馮獻慶
Using a Two-stage Model to Estimate the Loss Given Default Distribution
author_sort Fong-Sian Cing
title Using a Two-stage Model to Estimate the Loss Given Default Distribution
title_short Using a Two-stage Model to Estimate the Loss Given Default Distribution
title_full Using a Two-stage Model to Estimate the Loss Given Default Distribution
title_fullStr Using a Two-stage Model to Estimate the Loss Given Default Distribution
title_full_unstemmed Using a Two-stage Model to Estimate the Loss Given Default Distribution
title_sort using a two-stage model to estimate the loss given default distribution
publishDate 2017
url http://ndltd.ncl.edu.tw/handle/77591969479318458784
work_keys_str_mv AT fongsiancing usingatwostagemodeltoestimatethelossgivendefaultdistribution
AT féngxiànqìng usingatwostagemodeltoestimatethelossgivendefaultdistribution
AT fongsiancing shǐyòngèrjiēduànmóxínggūjìwéiyuēsǔnshīlǜfēnpèi
AT féngxiànqìng shǐyòngèrjiēduànmóxínggūjìwéiyuēsǔnshīlǜfēnpèi
_version_ 1718560740539891712