On Generalized Euclidean Rings
碩士 === 國立中央大學 === 數學系 === 105 === In this thesis, a generalized Euclidean ring, or GE-ring for short, a notion introduced by P. M. Cohn are studied. Properties and examples of GE-rings and GE_n-rings but not GE-rings are derived. Following the result of Bass, stable rank of a ring R (denoted by sr(R...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2017
|
Online Access: | http://ndltd.ncl.edu.tw/handle/928hqd |
Summary: | 碩士 === 國立中央大學 === 數學系 === 105 === In this thesis, a generalized Euclidean ring, or GE-ring for short, a notion introduced by P. M. Cohn are studied. Properties and examples of GE-rings and GE_n-rings but not GE-rings are derived. Following the result of Bass, stable rank of a ring R (denoted by sr(R)) is related to the general linear group over R. Every ring with stable rank one is a GE-ring. A principal ideal domain (ring) has stable rank ≤ 2. For a principal ideal domain R with stable rank one, R must be a Euclidean ring. Examples of GE-rings with stable rank higher than one are given. For the ring of integers O_K in the quadratic field K = Q(√d) with d a square free rational integer, sr(O_K) = 2.
|
---|