Summary: | 碩士 === 國立中央大學 === 能源工程研究所 === 105 === Through-mask electrochemical micro machining (TMEMM) is different from the normalElectrochemical micro machining (EMM). The design expense of the electrode tool can be saved because the electrode tool won’t be affected by the shape of the ending product. Without changing the electrode tool, TMEMM can fulfill end product with any shape by only changing the shape of the electric insulated mask.
Nowdays, the researches on TMEMM simulation are restricted in the influence of electric field. However the process of EMM is the combination of complex physical phenomena. In this study, we try to implement the electric field model with temperature field and flow field by finite element method.The effect of working parameters, such as: applied voltage, velocity of electrolyte, temperature of electrolyte, mask thickness etc…, on the resulting shape are investigated.
Results show that, as the voltage is increased, the machining depth become deeper and the island ratio is higher. When the electrolyte velocity is slower, the electrolyte temperature in machining zone is higher, and the shape of machining zone becomes asymmetry and the island ratio becomes higher. If the mask is thinner, the shadow effect of the mask becomes worse and the portion current density is increased. Consequently the machining depth becomes deeper, and the island ratio becomes higher too.
|