Influences of Analogue Interference on Sensing Performance of Imprinted Inverse Opals

碩士 === 國立交通大學 === 環境工程系所 === 105 === Three inverse opal photonic crystal sensors imprinted with Bisphenol A (BPA), Bis(2-hydroxyphenyl)methane (2HDPM), and phenol were prepared, and the influence of interactions between target analyte and structural analogues on their sensing performance were invest...

Full description

Bibliographic Details
Main Authors: Chung, Wen-Ching, 鍾文卿
Other Authors: Chang, Sue-Min
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/96047088728963865733
Description
Summary:碩士 === 國立交通大學 === 環境工程系所 === 105 === Three inverse opal photonic crystal sensors imprinted with Bisphenol A (BPA), Bis(2-hydroxyphenyl)methane (2HDPM), and phenol were prepared, and the influence of interactions between target analyte and structural analogues on their sensing performance were investigated. Results indicate that all these imprinted sensors exhibited high selectivity, a broad linear range (0.4~120 mg/L), and low detection limits (0.4~0.5 mg/L). The interference test showed that the response of the sensors was suppressed when the π-π interaction between the target and its structural analogues is stronger than the interaction between imprint cavities and the target. In addition, the inhibition increases with increasing concentrations of analogues. The molecular size and stereogeometry of analytes determine how easy the target can bind into the imprinted cavities. Although BPA and 2HDPM are similar in size and structure, the symmetrical stereo-structure of 2HDPM enables this compound easier to fit in the imprinted cavity, thereby the inhibition effect of phenol on 2HDPM sensing is slightly lower than that on BPA sensing. On the other hand, the sensing ability of the phenol-imprinted sensor was less interfered by 2HDPM and BPA because the smaller molecular size of phenol facilitates its binding into the cavities. The linear test revealed that the presence of analogues inhibited response and led to decrease of linear intercept. The interference became insignificant for the BPA- and 2HDPM-imprinted sensors when the target concentration was increased. Due to weak affinity of phenol toward analogues, the slope of the linearity of the phenol-imprinted sensor was insignificantly affect by the matrix except for slightly decrease in intercept. These results clearly demonstrated that the impact of analogues on the sensing performance is mainly due to the π-π interaction between the molecules which hinders binding to suppress response.