Regression calibration estimation of measurement errors in negative binomial regression models

碩士 === 國立中興大學 === 統計學研究所 === 105 === For the count data, often using the Poisson Regression or Negative Binomial Regression Model fit in medicine, public health and ecological. In this paper, we discuss the estimation method when the independent variable is a time series data and has the measurement...

Full description

Bibliographic Details
Main Authors: Huan-Su Wu, 吳桓夙
Other Authors: 黃文瀚
Format: Others
Language:zh-TW
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/91515714398562092507
id ndltd-TW-105NCHU5337005
record_format oai_dc
spelling ndltd-TW-105NCHU53370052017-10-06T04:22:03Z http://ndltd.ncl.edu.tw/handle/91515714398562092507 Regression calibration estimation of measurement errors in negative binomial regression models 迴歸校正估計於負二項迴歸具測量誤差模型之研究 Huan-Su Wu 吳桓夙 碩士 國立中興大學 統計學研究所 105 For the count data, often using the Poisson Regression or Negative Binomial Regression Model fit in medicine, public health and ecological. In this paper, we discuss the estimation method when the independent variable is a time series data and has the measurement error in the Negative Binomial Regression Model. We propose to use the Nonparametric Regression Model estimating the trend of the time series data in place of the observed data, and then further use the Regression Calibration to correct the estimation of the parameters. Therefore, the simulation study we compare the merits of the three methods in difference parameter settings. In addition, we applied our method to illustrate the relationship between a dengue fever outbreak and the disease vector. 黃文瀚 2017 學位論文 ; thesis 52 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 統計學研究所 === 105 === For the count data, often using the Poisson Regression or Negative Binomial Regression Model fit in medicine, public health and ecological. In this paper, we discuss the estimation method when the independent variable is a time series data and has the measurement error in the Negative Binomial Regression Model. We propose to use the Nonparametric Regression Model estimating the trend of the time series data in place of the observed data, and then further use the Regression Calibration to correct the estimation of the parameters. Therefore, the simulation study we compare the merits of the three methods in difference parameter settings. In addition, we applied our method to illustrate the relationship between a dengue fever outbreak and the disease vector.
author2 黃文瀚
author_facet 黃文瀚
Huan-Su Wu
吳桓夙
author Huan-Su Wu
吳桓夙
spellingShingle Huan-Su Wu
吳桓夙
Regression calibration estimation of measurement errors in negative binomial regression models
author_sort Huan-Su Wu
title Regression calibration estimation of measurement errors in negative binomial regression models
title_short Regression calibration estimation of measurement errors in negative binomial regression models
title_full Regression calibration estimation of measurement errors in negative binomial regression models
title_fullStr Regression calibration estimation of measurement errors in negative binomial regression models
title_full_unstemmed Regression calibration estimation of measurement errors in negative binomial regression models
title_sort regression calibration estimation of measurement errors in negative binomial regression models
publishDate 2017
url http://ndltd.ncl.edu.tw/handle/91515714398562092507
work_keys_str_mv AT huansuwu regressioncalibrationestimationofmeasurementerrorsinnegativebinomialregressionmodels
AT wúhuánsù regressioncalibrationestimationofmeasurementerrorsinnegativebinomialregressionmodels
AT huansuwu huíguīxiàozhènggūjìyúfùèrxiànghuíguījùcèliàngwùchàmóxíngzhīyánjiū
AT wúhuánsù huíguīxiàozhènggūjìyúfùèrxiànghuíguījùcèliàngwùchàmóxíngzhīyánjiū
_version_ 1718549116989997056