Regression calibration estimation of measurement errors in negative binomial regression models
碩士 === 國立中興大學 === 統計學研究所 === 105 === For the count data, often using the Poisson Regression or Negative Binomial Regression Model fit in medicine, public health and ecological. In this paper, we discuss the estimation method when the independent variable is a time series data and has the measurement...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2017
|
Online Access: | http://ndltd.ncl.edu.tw/handle/91515714398562092507 |
id |
ndltd-TW-105NCHU5337005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-105NCHU53370052017-10-06T04:22:03Z http://ndltd.ncl.edu.tw/handle/91515714398562092507 Regression calibration estimation of measurement errors in negative binomial regression models 迴歸校正估計於負二項迴歸具測量誤差模型之研究 Huan-Su Wu 吳桓夙 碩士 國立中興大學 統計學研究所 105 For the count data, often using the Poisson Regression or Negative Binomial Regression Model fit in medicine, public health and ecological. In this paper, we discuss the estimation method when the independent variable is a time series data and has the measurement error in the Negative Binomial Regression Model. We propose to use the Nonparametric Regression Model estimating the trend of the time series data in place of the observed data, and then further use the Regression Calibration to correct the estimation of the parameters. Therefore, the simulation study we compare the merits of the three methods in difference parameter settings. In addition, we applied our method to illustrate the relationship between a dengue fever outbreak and the disease vector. 黃文瀚 2017 學位論文 ; thesis 52 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中興大學 === 統計學研究所 === 105 === For the count data, often using the Poisson Regression or Negative Binomial Regression Model fit in medicine, public health and ecological. In this paper, we discuss the estimation method when the independent variable is a time series data and has the measurement error in the Negative Binomial Regression Model. We propose to use the Nonparametric Regression Model estimating the trend of the time series data in place of the observed data, and then further use the Regression Calibration to correct the estimation of the parameters. Therefore, the simulation study we compare the merits of the three methods in difference parameter settings. In addition, we applied our method to illustrate the relationship between a dengue fever outbreak and the disease vector.
|
author2 |
黃文瀚 |
author_facet |
黃文瀚 Huan-Su Wu 吳桓夙 |
author |
Huan-Su Wu 吳桓夙 |
spellingShingle |
Huan-Su Wu 吳桓夙 Regression calibration estimation of measurement errors in negative binomial regression models |
author_sort |
Huan-Su Wu |
title |
Regression calibration estimation of measurement errors in negative binomial regression models |
title_short |
Regression calibration estimation of measurement errors in negative binomial regression models |
title_full |
Regression calibration estimation of measurement errors in negative binomial regression models |
title_fullStr |
Regression calibration estimation of measurement errors in negative binomial regression models |
title_full_unstemmed |
Regression calibration estimation of measurement errors in negative binomial regression models |
title_sort |
regression calibration estimation of measurement errors in negative binomial regression models |
publishDate |
2017 |
url |
http://ndltd.ncl.edu.tw/handle/91515714398562092507 |
work_keys_str_mv |
AT huansuwu regressioncalibrationestimationofmeasurementerrorsinnegativebinomialregressionmodels AT wúhuánsù regressioncalibrationestimationofmeasurementerrorsinnegativebinomialregressionmodels AT huansuwu huíguīxiàozhènggūjìyúfùèrxiànghuíguījùcèliàngwùchàmóxíngzhīyánjiū AT wúhuánsù huíguīxiàozhènggūjìyúfùèrxiànghuíguījùcèliàngwùchàmóxíngzhīyánjiū |
_version_ |
1718549116989997056 |