Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions
碩士 === 中原大學 === 電機工程研究所 === 105 === The solar modules will have a number of local maximum power point under partial shading conditions, such that the traditional maximum power point tracking (MPPT) methods will lead to some local maximum power points and reduce energy conversion efficiency. In order...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2017
|
Online Access: | http://ndltd.ncl.edu.tw/handle/80990878065366920495 |
id |
ndltd-TW-105CYCU5442004 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-105CYCU54420042017-03-05T04:18:28Z http://ndltd.ncl.edu.tw/handle/80990878065366920495 Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions 太陽能遮罩效應下之多模組系統最大功率點追蹤 Wei-En Shao 邵偉恩 碩士 中原大學 電機工程研究所 105 The solar modules will have a number of local maximum power point under partial shading conditions, such that the traditional maximum power point tracking (MPPT) methods will lead to some local maximum power points and reduce energy conversion efficiency. In order to avoid this problem, this thesis proposes a hybrid method by combining shuffled frog leaping algorithm (SFLA) and incremental conductance method (IncCond) for a multi-module DC solar power system. In this system, a master boost converter is used as a voltage regulator for the DC load, while the other slave boost converters perform the maximum power point tracking with Arduino control board. Finally, Matlab simulation and circuit implementation are carried out to verify the proposed hybrid method to achieve the global maximum power point tracking under partial shading conditions. Chian-Song Chiu 邱謙松 2017 學位論文 ; thesis 119 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 中原大學 === 電機工程研究所 === 105 === The solar modules will have a number of local maximum power point under partial shading conditions, such that the traditional maximum power point tracking (MPPT) methods will lead to some local maximum power points and reduce energy conversion efficiency. In order to avoid this problem, this thesis proposes a hybrid method by combining shuffled frog leaping algorithm (SFLA) and incremental conductance method (IncCond) for a multi-module DC solar power system. In this system, a master boost converter is used as a voltage regulator for the DC load, while the other slave boost converters perform the maximum power point tracking with Arduino control board. Finally, Matlab simulation and circuit implementation are carried out to verify the proposed hybrid method to achieve the global maximum power point tracking under partial shading conditions.
|
author2 |
Chian-Song Chiu |
author_facet |
Chian-Song Chiu Wei-En Shao 邵偉恩 |
author |
Wei-En Shao 邵偉恩 |
spellingShingle |
Wei-En Shao 邵偉恩 Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions |
author_sort |
Wei-En Shao |
title |
Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions |
title_short |
Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions |
title_full |
Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions |
title_fullStr |
Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions |
title_full_unstemmed |
Maximum Power Point Tracking for a Multi-module System under Partial Shading Conditions |
title_sort |
maximum power point tracking for a multi-module system under partial shading conditions |
publishDate |
2017 |
url |
http://ndltd.ncl.edu.tw/handle/80990878065366920495 |
work_keys_str_mv |
AT weienshao maximumpowerpointtrackingforamultimodulesystemunderpartialshadingconditions AT shàowěiēn maximumpowerpointtrackingforamultimodulesystemunderpartialshadingconditions AT weienshao tàiyángnéngzhēzhàoxiàoyīngxiàzhīduōmózǔxìtǒngzuìdàgōnglǜdiǎnzhuīzōng AT shàowěiēn tàiyángnéngzhēzhàoxiàoyīngxiàzhīduōmózǔxìtǒngzuìdàgōnglǜdiǎnzhuīzōng |
_version_ |
1718419986449432576 |