Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model
碩士 === 國立中正大學 === 數學系應用數學研究所 === 105 === In this study, we investigate traveling wave solutions in the Producer-Scrounger model proposed by Cosner & Nevai [2]. Previous studies [8] suggest that traveling wave solutions to this model exist only if the associated threshold constant $R_0$ is larger...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2017
|
Online Access: | http://ndltd.ncl.edu.tw/handle/e5dra9 |
id |
ndltd-TW-105CCU00507009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-105CCU005070092019-05-15T23:24:51Z http://ndltd.ncl.edu.tw/handle/e5dra9 Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model WU, CHIH-CHI 吳芷綺 碩士 國立中正大學 數學系應用數學研究所 105 In this study, we investigate traveling wave solutions in the Producer-Scrounger model proposed by Cosner & Nevai [2]. Previous studies [8] suggest that traveling wave solutions to this model exist only if the associated threshold constant $R_0$ is larger than one. Further, if $R_0>1$, then there exists a critical value $c_m$ such that a traveling wave solution with speed c exists for $c>c_m$, whereas a traveling wave solution with speed c does not exist for $c<c_m$. This leaves open the question whether a traveling wave solution with speed $c_m$ exists. In this study, we give an affirmative answer to this question. HWANG, TZY-WEI 黃子偉 2017 學位論文 ; thesis 27 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 數學系應用數學研究所 === 105 === In this study, we investigate traveling wave solutions in the Producer-Scrounger model proposed by Cosner & Nevai [2]. Previous studies [8] suggest that traveling wave solutions to this model exist only if the associated threshold constant $R_0$ is larger than one. Further, if $R_0>1$, then there exists a critical value $c_m$ such that a traveling wave solution with speed c exists for $c>c_m$, whereas a traveling wave solution with speed c does not exist for $c<c_m$. This leaves open the question whether a traveling wave solution with speed $c_m$ exists. In this study, we give an affirmative answer to this question.
|
author2 |
HWANG, TZY-WEI |
author_facet |
HWANG, TZY-WEI WU, CHIH-CHI 吳芷綺 |
author |
WU, CHIH-CHI 吳芷綺 |
spellingShingle |
WU, CHIH-CHI 吳芷綺 Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model |
author_sort |
WU, CHIH-CHI |
title |
Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model |
title_short |
Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model |
title_full |
Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model |
title_fullStr |
Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model |
title_full_unstemmed |
Existence of Traveling Waves with Minimum Speed in the Producer-Scrounger Model |
title_sort |
existence of traveling waves with minimum speed in the producer-scrounger model |
publishDate |
2017 |
url |
http://ndltd.ncl.edu.tw/handle/e5dra9 |
work_keys_str_mv |
AT wuchihchi existenceoftravelingwaveswithminimumspeedintheproducerscroungermodel AT wúzhǐqǐ existenceoftravelingwaveswithminimumspeedintheproducerscroungermodel |
_version_ |
1719146965253488640 |