Some refinements of Hadamard Inequality

碩士 === 淡江大學 === 中等學校教師在職進修數學教學碩士學位班 === 104 === If f : [a,b] → ℝ is convex on [a,b], then f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) This is the classical Hermite-Hadamard inequality If f is a convex function on [a,b] , do there exist real numbers l , L such that f((a+b)/2)≤ l ≤1/(...

Full description

Bibliographic Details
Main Authors: Li-Te Kuo, 郭立惪
Other Authors: Gou-Sheng Yang
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/79738112630856390245
id ndltd-TW-104TKU05626008
record_format oai_dc
spelling ndltd-TW-104TKU056260082017-08-27T04:30:26Z http://ndltd.ncl.edu.tw/handle/79738112630856390245 Some refinements of Hadamard Inequality 一些更細緻的Hadamard不等式 Li-Te Kuo 郭立惪 碩士 淡江大學 中等學校教師在職進修數學教學碩士學位班 104 If f : [a,b] → ℝ is convex on [a,b], then f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) This is the classical Hermite-Hadamard inequality If f is a convex function on [a,b] , do there exist real numbers l , L such that f((a+b)/2)≤ l ≤1/(b-a)∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2) The main purpose of this paper is to give some answers to the question (1.2) Gou-Sheng Yang 楊國勝 2016 學位論文 ; thesis 18 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 淡江大學 === 中等學校教師在職進修數學教學碩士學位班 === 104 === If f : [a,b] → ℝ is convex on [a,b], then f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) This is the classical Hermite-Hadamard inequality If f is a convex function on [a,b] , do there exist real numbers l , L such that f((a+b)/2)≤ l ≤1/(b-a)∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2) The main purpose of this paper is to give some answers to the question (1.2)
author2 Gou-Sheng Yang
author_facet Gou-Sheng Yang
Li-Te Kuo
郭立惪
author Li-Te Kuo
郭立惪
spellingShingle Li-Te Kuo
郭立惪
Some refinements of Hadamard Inequality
author_sort Li-Te Kuo
title Some refinements of Hadamard Inequality
title_short Some refinements of Hadamard Inequality
title_full Some refinements of Hadamard Inequality
title_fullStr Some refinements of Hadamard Inequality
title_full_unstemmed Some refinements of Hadamard Inequality
title_sort some refinements of hadamard inequality
publishDate 2016
url http://ndltd.ncl.edu.tw/handle/79738112630856390245
work_keys_str_mv AT litekuo somerefinementsofhadamardinequality
AT guōlìdé somerefinementsofhadamardinequality
AT litekuo yīxiēgèngxìzhìdehadamardbùděngshì
AT guōlìdé yīxiēgèngxìzhìdehadamardbùděngshì
_version_ 1718519939641376768