Some refinements of Hadamard Inequality
碩士 === 淡江大學 === 中等學校教師在職進修數學教學碩士學位班 === 104 === If f : [a,b] → ℝ is convex on [a,b], then f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) This is the classical Hermite-Hadamard inequality If f is a convex function on [a,b] , do there exist real numbers l , L such that f((a+b)/2)≤ l ≤1/(...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2016
|
Online Access: | http://ndltd.ncl.edu.tw/handle/79738112630856390245 |
id |
ndltd-TW-104TKU05626008 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-104TKU056260082017-08-27T04:30:26Z http://ndltd.ncl.edu.tw/handle/79738112630856390245 Some refinements of Hadamard Inequality 一些更細緻的Hadamard不等式 Li-Te Kuo 郭立惪 碩士 淡江大學 中等學校教師在職進修數學教學碩士學位班 104 If f : [a,b] → ℝ is convex on [a,b], then f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) This is the classical Hermite-Hadamard inequality If f is a convex function on [a,b] , do there exist real numbers l , L such that f((a+b)/2)≤ l ≤1/(b-a)∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2) The main purpose of this paper is to give some answers to the question (1.2) Gou-Sheng Yang 楊國勝 2016 學位論文 ; thesis 18 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 淡江大學 === 中等學校教師在職進修數學教學碩士學位班 === 104 === If f : [a,b] → ℝ is convex on [a,b], then
f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1)
This is the classical Hermite-Hadamard inequality
If f is a convex function on [a,b] , do there exist real numbers l , L such that
f((a+b)/2)≤ l ≤1/(b-a)∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2)
The main purpose of this paper is to give some answers to
the question (1.2)
|
author2 |
Gou-Sheng Yang |
author_facet |
Gou-Sheng Yang Li-Te Kuo 郭立惪 |
author |
Li-Te Kuo 郭立惪 |
spellingShingle |
Li-Te Kuo 郭立惪 Some refinements of Hadamard Inequality |
author_sort |
Li-Te Kuo |
title |
Some refinements of Hadamard Inequality |
title_short |
Some refinements of Hadamard Inequality |
title_full |
Some refinements of Hadamard Inequality |
title_fullStr |
Some refinements of Hadamard Inequality |
title_full_unstemmed |
Some refinements of Hadamard Inequality |
title_sort |
some refinements of hadamard inequality |
publishDate |
2016 |
url |
http://ndltd.ncl.edu.tw/handle/79738112630856390245 |
work_keys_str_mv |
AT litekuo somerefinementsofhadamardinequality AT guōlìdé somerefinementsofhadamardinequality AT litekuo yīxiēgèngxìzhìdehadamardbùděngshì AT guōlìdé yīxiēgèngxìzhìdehadamardbùděngshì |
_version_ |
1718519939641376768 |