Learning Visual Object and Word Association
碩士 === 國立臺灣科技大學 === 電子工程系 === 104 === This paper presents a discriminative learning framework to simultaneously find the association between objects and words and perform template matching for complex association patterns. We formulate the problem of finding the association between visual objects an...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2016
|
Online Access: | http://ndltd.ncl.edu.tw/handle/91551219851515561995 |
id |
ndltd-TW-104NTUS5428032 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-104NTUS54280322017-10-29T04:34:40Z http://ndltd.ncl.edu.tw/handle/91551219851515561995 Learning Visual Object and Word Association 學習圖片與文字對應關係的研究 Ting-Zhi Wang 王亭之 碩士 國立臺灣科技大學 電子工程系 104 This paper presents a discriminative learning framework to simultaneously find the association between objects and words and perform template matching for complex association patterns. We formulate the problem of finding the association between visual objects and texts as a bipartite graph matching problem. Since the compatibility function has significant influence on the final matching results, we learn an optimal compatibility function which encodes the association rules for visual objects and words via a structural support vector machine (SVM). Also, an iterative inference procedure is developed to alternatively infer visual objects and texts association and template model selection. Simulations show the new method outperforms some competing counterparts. Yie-Tarng Chen 陳郁堂 2016 學位論文 ; thesis 48 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣科技大學 === 電子工程系 === 104 === This paper presents a discriminative learning framework to simultaneously find the association between objects and words and perform template matching for complex association patterns. We formulate the problem of finding the association between visual objects and texts as a bipartite graph matching problem. Since the compatibility function has significant influence on the final matching results, we learn an optimal compatibility function which encodes the association rules for visual objects and words via a structural support vector machine (SVM). Also, an iterative inference procedure is developed to alternatively infer visual objects and texts association and template model selection. Simulations show the new method outperforms some competing counterparts.
|
author2 |
Yie-Tarng Chen |
author_facet |
Yie-Tarng Chen Ting-Zhi Wang 王亭之 |
author |
Ting-Zhi Wang 王亭之 |
spellingShingle |
Ting-Zhi Wang 王亭之 Learning Visual Object and Word Association |
author_sort |
Ting-Zhi Wang |
title |
Learning Visual Object and Word Association |
title_short |
Learning Visual Object and Word Association |
title_full |
Learning Visual Object and Word Association |
title_fullStr |
Learning Visual Object and Word Association |
title_full_unstemmed |
Learning Visual Object and Word Association |
title_sort |
learning visual object and word association |
publishDate |
2016 |
url |
http://ndltd.ncl.edu.tw/handle/91551219851515561995 |
work_keys_str_mv |
AT tingzhiwang learningvisualobjectandwordassociation AT wángtíngzhī learningvisualobjectandwordassociation AT tingzhiwang xuéxítúpiànyǔwénzìduìyīngguānxìdeyánjiū AT wángtíngzhī xuéxítúpiànyǔwénzìduìyīngguānxìdeyánjiū |
_version_ |
1718558245885313024 |