Learning Visual Object and Word Association

碩士 === 國立臺灣科技大學 === 電子工程系 === 104 === This paper presents a discriminative learning framework to simultaneously find the association between objects and words and perform template matching for complex association patterns. We formulate the problem of finding the association between visual objects an...

Full description

Bibliographic Details
Main Authors: Ting-Zhi Wang, 王亭之
Other Authors: Yie-Tarng Chen
Format: Others
Language:en_US
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/91551219851515561995
id ndltd-TW-104NTUS5428032
record_format oai_dc
spelling ndltd-TW-104NTUS54280322017-10-29T04:34:40Z http://ndltd.ncl.edu.tw/handle/91551219851515561995 Learning Visual Object and Word Association 學習圖片與文字對應關係的研究 Ting-Zhi Wang 王亭之 碩士 國立臺灣科技大學 電子工程系 104 This paper presents a discriminative learning framework to simultaneously find the association between objects and words and perform template matching for complex association patterns. We formulate the problem of finding the association between visual objects and texts as a bipartite graph matching problem. Since the compatibility function has significant influence on the final matching results, we learn an optimal compatibility function which encodes the association rules for visual objects and words via a structural support vector machine (SVM). Also, an iterative inference procedure is developed to alternatively infer visual objects and texts association and template model selection. Simulations show the new method outperforms some competing counterparts. Yie-Tarng Chen 陳郁堂 2016 學位論文 ; thesis 48 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣科技大學 === 電子工程系 === 104 === This paper presents a discriminative learning framework to simultaneously find the association between objects and words and perform template matching for complex association patterns. We formulate the problem of finding the association between visual objects and texts as a bipartite graph matching problem. Since the compatibility function has significant influence on the final matching results, we learn an optimal compatibility function which encodes the association rules for visual objects and words via a structural support vector machine (SVM). Also, an iterative inference procedure is developed to alternatively infer visual objects and texts association and template model selection. Simulations show the new method outperforms some competing counterparts.
author2 Yie-Tarng Chen
author_facet Yie-Tarng Chen
Ting-Zhi Wang
王亭之
author Ting-Zhi Wang
王亭之
spellingShingle Ting-Zhi Wang
王亭之
Learning Visual Object and Word Association
author_sort Ting-Zhi Wang
title Learning Visual Object and Word Association
title_short Learning Visual Object and Word Association
title_full Learning Visual Object and Word Association
title_fullStr Learning Visual Object and Word Association
title_full_unstemmed Learning Visual Object and Word Association
title_sort learning visual object and word association
publishDate 2016
url http://ndltd.ncl.edu.tw/handle/91551219851515561995
work_keys_str_mv AT tingzhiwang learningvisualobjectandwordassociation
AT wángtíngzhī learningvisualobjectandwordassociation
AT tingzhiwang xuéxítúpiànyǔwénzìduìyīngguānxìdeyánjiū
AT wángtíngzhī xuéxítúpiànyǔwénzìduìyīngguānxìdeyánjiū
_version_ 1718558245885313024