Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection

碩士 === 國立臺灣大學 === 電子工程學研究所 === 104 === This work presents an application of Blind Source Separation (BSS) Algorithms on Dual-band IR Spectrogram for breast cancer detection, which is used to trace the effect of long-term chemotherapy for breast-cancer patients. We take Dual-band IR Spectrogram’s R...

Full description

Bibliographic Details
Main Authors: Chen-Yu Li, 李鎮宇
Other Authors: Sao-Jie Chen
Format: Others
Language:en_US
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/06284823696915431885
id ndltd-TW-104NTU05428057
record_format oai_dc
spelling ndltd-TW-104NTU054280572017-04-29T04:31:55Z http://ndltd.ncl.edu.tw/handle/06284823696915431885 Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection 應用於雙波段紅外線之乳癌檢測盲源分離演算法 Chen-Yu Li 李鎮宇 碩士 國立臺灣大學 電子工程學研究所 104 This work presents an application of Blind Source Separation (BSS) Algorithms on Dual-band IR Spectrogram for breast cancer detection, which is used to trace the effect of long-term chemotherapy for breast-cancer patients. We take Dual-band IR Spectrogram’s RAW Data as an input to the BSS algorithms. Also, we plan to integrate this analytical algorithm into the back-end processor of our designed Dual-band IR Sensor and Readout Circuit Platform. This work will provide a more convenient medical application of our Improved Neighbor-based BSS algorithm on Dual-band IR Spectrogram for breast cancer detection. For Demarcating Degree, our Improved Neighbor-based BSS algorithm is approximately 15% better than other algorithms. For Correctness Rate, our improved algorithm approximately increases 10% compared with other algorithms. Sao-Jie Chen 陳少傑 2016 學位論文 ; thesis 46 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣大學 === 電子工程學研究所 === 104 === This work presents an application of Blind Source Separation (BSS) Algorithms on Dual-band IR Spectrogram for breast cancer detection, which is used to trace the effect of long-term chemotherapy for breast-cancer patients. We take Dual-band IR Spectrogram’s RAW Data as an input to the BSS algorithms. Also, we plan to integrate this analytical algorithm into the back-end processor of our designed Dual-band IR Sensor and Readout Circuit Platform. This work will provide a more convenient medical application of our Improved Neighbor-based BSS algorithm on Dual-band IR Spectrogram for breast cancer detection. For Demarcating Degree, our Improved Neighbor-based BSS algorithm is approximately 15% better than other algorithms. For Correctness Rate, our improved algorithm approximately increases 10% compared with other algorithms.
author2 Sao-Jie Chen
author_facet Sao-Jie Chen
Chen-Yu Li
李鎮宇
author Chen-Yu Li
李鎮宇
spellingShingle Chen-Yu Li
李鎮宇
Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection
author_sort Chen-Yu Li
title Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection
title_short Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection
title_full Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection
title_fullStr Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection
title_full_unstemmed Application of Blind Source Separation Algorithms on Dual-band IR Spectrogram for Breast Cancer Detection
title_sort application of blind source separation algorithms on dual-band ir spectrogram for breast cancer detection
publishDate 2016
url http://ndltd.ncl.edu.tw/handle/06284823696915431885
work_keys_str_mv AT chenyuli applicationofblindsourceseparationalgorithmsondualbandirspectrogramforbreastcancerdetection
AT lǐzhènyǔ applicationofblindsourceseparationalgorithmsondualbandirspectrogramforbreastcancerdetection
AT chenyuli yīngyòngyúshuāngbōduànhóngwàixiànzhīrǔáijiǎncèmángyuánfēnlíyǎnsuànfǎ
AT lǐzhènyǔ yīngyòngyúshuāngbōduànhóngwàixiànzhīrǔáijiǎncèmángyuánfēnlíyǎnsuànfǎ
_version_ 1718445720734793728