The Study of LED Marine Beacons

碩士 === 國立中央大學 === 光電科學與工程學系 === 104 === In this thesis, we use the mid-field algorithm to build the light source model. Based on the light source model, we respectively design the lenses for two marine beacons. 5 LED lamps and high power LED are selected as our light sources. By the process of...

Full description

Bibliographic Details
Main Authors: Yung-Chang Jen, 任永昌
Other Authors: Ching-Cherng Sun
Format: Others
Language:zh-TW
Published: 2016
Online Access:http://ndltd.ncl.edu.tw/handle/t5g4nd
Description
Summary:碩士 === 國立中央大學 === 光電科學與工程學系 === 104 === In this thesis, we use the mid-field algorithm to build the light source model. Based on the light source model, we respectively design the lenses for two marine beacons. 5 LED lamps and high power LED are selected as our light sources. By the process of our lens design, we successfully keep the divergence angle of the light source to diverge in the horizontal direction and converge to 8-10 degrees in the vertical direction. In the project of marine beacon using 5 LED lamp, we design a specific lens to be suitable for different light sources which colors are red, yellow, green, and white. Besides, by our design, the luminous intensity of the marine beacon using 5Φ LED lamp can achieve to the IALA recommendation’s requirement of 5 nautical miles. The measurement of color coordinates can also fit the IALA recommendation’s requirement. In the project of marine beacon using high power LED, we design a specific surface-structured TIR lens into the marine beacon. By the surface-structured TIR lens, we successfully keep the divergence angle of the high power LED to diverge to 68 degrees in the horizontal direction and converge to 8 degrees in the vertical direction. According to the simulation results, the optical efficiency of the surface-structured TIR lens is 84.2 %. Under a distance of 5 m, the optical utilization factor is 63.5 % when the area of illuminated region is 10 m * 0.875 m.