Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load
碩士 === 國立成功大學 === 工程科學系 === 104 === This study presents the vibration analysis of piezoelectric Mindlin plate under moving load. The host plate is aluminum and the bottom surface bonded with a piezoelectric plate. The governing equations and boundary conditions of the entire system are derived from...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2016
|
Online Access: | http://ndltd.ncl.edu.tw/handle/95409247531643997295 |
id |
ndltd-TW-104NCKU5028067 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-104NCKU50280672017-10-01T04:30:04Z http://ndltd.ncl.edu.tw/handle/95409247531643997295 Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load 承受移動負載之壓電複合層板振動分析 Ming-CheTsai 蔡明哲 碩士 國立成功大學 工程科學系 104 This study presents the vibration analysis of piezoelectric Mindlin plate under moving load. The host plate is aluminum and the bottom surface bonded with a piezoelectric plate. The governing equations and boundary conditions of the entire system are derived from performing Hamilton’s principle. The finite element method is adopted to analyze the behavior of the entire plate. The shape functions of one element are constructed from solving the equations of static equilibrium. Newmark’s Integration Method is adopted to analyze the plate’s dynamic response. The effects of thickness and area of the piezoelectric layer on the displacement at the center of the plate and the etymology of electricity on the bottom piezoelectric layer are investigated. Rong-Tyai Wang 王榮泰 2016 學位論文 ; thesis 63 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立成功大學 === 工程科學系 === 104 === This study presents the vibration analysis of piezoelectric Mindlin
plate under moving load. The host plate is aluminum and the bottom surface bonded with a piezoelectric plate. The governing equations and boundary conditions of the entire system are derived from performing Hamilton’s principle. The finite element method is adopted to analyze the behavior of the entire plate. The shape functions of one element are constructed from solving the equations of static equilibrium. Newmark’s Integration Method is adopted to analyze the plate’s dynamic response. The effects of thickness and area of the piezoelectric layer on the displacement at the center of the plate and the etymology of electricity on the bottom piezoelectric layer are investigated.
|
author2 |
Rong-Tyai Wang |
author_facet |
Rong-Tyai Wang Ming-CheTsai 蔡明哲 |
author |
Ming-CheTsai 蔡明哲 |
spellingShingle |
Ming-CheTsai 蔡明哲 Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
author_sort |
Ming-CheTsai |
title |
Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
title_short |
Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
title_full |
Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
title_fullStr |
Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
title_full_unstemmed |
Vibration Analysis of Piezoelectric Mindlin Plate under Moving Load |
title_sort |
vibration analysis of piezoelectric mindlin plate under moving load |
publishDate |
2016 |
url |
http://ndltd.ncl.edu.tw/handle/95409247531643997295 |
work_keys_str_mv |
AT mingchetsai vibrationanalysisofpiezoelectricmindlinplateundermovingload AT càimíngzhé vibrationanalysisofpiezoelectricmindlinplateundermovingload AT mingchetsai chéngshòuyídòngfùzàizhīyādiànfùhécéngbǎnzhèndòngfēnxī AT càimíngzhé chéngshòuyídòngfùzàizhīyādiànfùhécéngbǎnzhèndòngfēnxī |
_version_ |
1718541775130329088 |