Theoretical Studies of Star-shaped Metal-free Dye-sensitized Solar Cell Organic Dyes

碩士 === 淡江大學 === 化學學系碩士班 === 103 === In this study, we designed a series of metal-free dye-sensitized solar cell (DSSC) organic dyes with star-shaped system ((EDG1)2-EDG2-π-EWG), incorporating with different moiety, such as auxiliary electron-donating groups (EDG1), mainly electron-donating group (ED...

Full description

Bibliographic Details
Main Authors: Chun-Chi Chang, 張鈞齊
Other Authors: Bo-Cheng Wang
Format: Others
Language:zh-TW
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/66136092144547200044
Description
Summary:碩士 === 淡江大學 === 化學學系碩士班 === 103 === In this study, we designed a series of metal-free dye-sensitized solar cell (DSSC) organic dyes with star-shaped system ((EDG1)2-EDG2-π-EWG), incorporating with different moiety, such as auxiliary electron-donating groups (EDG1), mainly electron-donating group (EDG2), π-conjugated linker moiety and electron-withdrawing groups (EWG). Our calculated results were calculated by the density functional theory (DFT/B3LYP) and time-dependent density functional theory method with 6-31G(d) basis set. Our calculated results exhibited a good agreement with experimental data. In different EDG1 system, the stronger auxiliary electron-donating groups can make an effect to influence the molecular to get higher EHOMO, large absorption wavelength, large the free energy change for the electron injection, and longer lifetime. These calculated results of designed molecules show that the TPA series of PY and the DPBF series of DPP have a better performance, and may be used as potential sensitizers in the DSSC application. In different EWG system, the stronger acceptor groups can make an effect to influence the molecular to get lower ELUMO, smaller open circuit voltage. Moreover, when the molecular transition configurations is effective charge transfer excitation, electron distribution extend to anchoring group of dye, electron will injected efficiently to TiO¬2. These calculated results of designed molecules show that the TPA and DPBF series of C have a better performance, and may be used as potential sensitizers in the DSSC application.