Summary: | 碩士 === 國立臺灣科技大學 === 電子工程系 === 103 === The performance of the sparse matrix-vector multiplication (SMVM) on a parallel system is strongly conditioned by the distribution of data among its components. Two costs arise as a result of the used data mapping method: arithmetic and communication. The communication cost of an algorithm often dominates the arithmetic cost, and the gap between these costs tends to increase. Therefore, finding a mapping method
that reduces the communication cost is of high importance. On the other hand, the load distribution among the processing units must not be sacrificed as well. In this paper, a data mapping method is proposed for SMVM on Network-on-Chip (NoC) which achieves balanced working load and reduces the communication cost. Afterwards, an FPGA-based architecture is introduced which is designed to fit the proposed data mapping method. The experimental results show that the communication cost of the proposed design is 40\% lower than the previous work.
|