Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition
碩士 === 國立臺灣大學 === 海洋研究所 === 103 === Reconstructing ontogentic vertical migration (OVM) of deep sea demersal fishes is useful to understand their life history strategies. Nevertheless, information of the depth distribution at each life history stages of deep-sea fish is still scarce based on limited...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2015
|
Online Access: | http://ndltd.ncl.edu.tw/handle/5pr227 |
id |
ndltd-TW-103NTU05279023 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-103NTU052790232019-05-15T22:17:24Z http://ndltd.ncl.edu.tw/handle/5pr227 Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition 以耳石微細結構與穩定性碳氧同位素組成探討深海底棲性魚類之發育垂直遷徙 Tsung-Da Sui 隋宗達 碩士 國立臺灣大學 海洋研究所 103 Reconstructing ontogentic vertical migration (OVM) of deep sea demersal fishes is useful to understand their life history strategies. Nevertheless, information of the depth distribution at each life history stages of deep-sea fish is still scarce based on limited catching records. Otolith microstructure and stable isotope analyses are effective tools to study OVM of fish. Fish samples were collected by R/V Ocean Researcher I, from DaiShi harbor or by a fisherman in ChangBin. In this study, we analyzed the otolith microstructure and isotopic composition for 10 fish species belonged to 7 families. We compared our data to published data in order to provide a comprehensive understanding of OVM among species. The results suggest otolith δ13C and δ18O reflect metabolism and environmental temperature respectively, which can be used to reconstruct individual OVM. The residing depth distribution of the fish at each life history stages can be deduced from otolith δ18O. Lutjanidae, Uranoscopidae, Chlorophthalmidae and Peristediidae have OVM similar to other species analyzed in previous studies that showed a gradual migration to deeper water. Jellynose fish (Ateleopodidae), blackthroat seaperch (Doederleinia berycoides), and Elassodiscus obscurus showed unique OVM. Juveniles of jellynose fish migrated from ocean surface down to depths (600-1300 m) at around 63 days, then the fish rose quickly to around 200 m. D. berycoides showed up and down OVM among seasons and years. E. obscurus inhabited at 1500 m depth during early life stage then migrated to around 600 m depth. The relationship between distance of OVM and adult residence depth varied among species with different reproduction modes. Positive correlations were found for viviparous species and that produce pelagic eggs. However, no correlation was found in Alepocephalidae and E. obscurus that lay larger eggs. Some exceptions were found in jellynose fish and Hoplostethus melanopus. The formal had a long distance of OVM but depth of adult’s habitat is shallow and the latter did not showed OVM. This research revealed diversified OVM for deep sea fish, suggesting different strategies were evolved to cope with the harsh environments in the deep seas. Jen-Chieh Shiao 蕭仁傑 2015 學位論文 ; thesis 152 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺灣大學 === 海洋研究所 === 103 === Reconstructing ontogentic vertical migration (OVM) of deep sea demersal fishes is useful to understand their life history strategies. Nevertheless, information of the depth distribution at each life history stages of deep-sea fish is still scarce based on limited catching records. Otolith microstructure and stable isotope analyses are effective tools to study OVM of fish. Fish samples were collected by R/V Ocean Researcher I, from DaiShi harbor or by a fisherman in ChangBin. In this study, we analyzed the otolith microstructure and isotopic composition for 10 fish species belonged to 7 families. We compared our data to published data in order to provide a comprehensive understanding of OVM among species. The results suggest otolith δ13C and δ18O reflect metabolism and environmental temperature respectively, which can be used to reconstruct individual OVM. The residing depth distribution of the fish at each life history stages can be deduced from otolith δ18O. Lutjanidae, Uranoscopidae, Chlorophthalmidae and Peristediidae have OVM similar to other species analyzed in previous studies that showed a gradual migration to deeper water. Jellynose fish (Ateleopodidae), blackthroat seaperch (Doederleinia berycoides), and Elassodiscus obscurus showed unique OVM. Juveniles of jellynose fish migrated from ocean surface down to depths (600-1300 m) at around 63 days, then the fish rose quickly to around 200 m. D. berycoides showed up and down OVM among seasons and years. E. obscurus inhabited at 1500 m depth during early life stage then migrated to around 600 m depth. The relationship between distance of OVM and adult residence depth varied among species with different reproduction modes. Positive correlations were found for viviparous species and that produce pelagic eggs. However, no correlation was found in Alepocephalidae and E. obscurus that lay larger eggs. Some exceptions were found in jellynose fish and Hoplostethus melanopus. The formal had a long distance of OVM but depth of adult’s habitat is shallow and the latter did not showed OVM. This research revealed diversified OVM for deep sea fish, suggesting different strategies were evolved to cope with the harsh environments in the deep seas.
|
author2 |
Jen-Chieh Shiao |
author_facet |
Jen-Chieh Shiao Tsung-Da Sui 隋宗達 |
author |
Tsung-Da Sui 隋宗達 |
spellingShingle |
Tsung-Da Sui 隋宗達 Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition |
author_sort |
Tsung-Da Sui |
title |
Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition |
title_short |
Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition |
title_full |
Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition |
title_fullStr |
Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition |
title_full_unstemmed |
Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13C and δ18O stable isotope composition |
title_sort |
ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure, δ13c and δ18o stable isotope composition |
publishDate |
2015 |
url |
http://ndltd.ncl.edu.tw/handle/5pr227 |
work_keys_str_mv |
AT tsungdasui ontogeneticverticalmigrationofdeepseademersalfishesrevealedbyotolithmicrostructured13candd18ostableisotopecomposition AT suízōngdá ontogeneticverticalmigrationofdeepseademersalfishesrevealedbyotolithmicrostructured13candd18ostableisotopecomposition AT tsungdasui yǐěrshíwēixìjiégòuyǔwěndìngxìngtànyǎngtóngwèisùzǔchéngtàntǎoshēnhǎidǐqīxìngyúlèizhīfāyùchuízhíqiānxǐ AT suízōngdá yǐěrshíwēixìjiégòuyǔwěndìngxìngtànyǎngtóngwèisùzǔchéngtàntǎoshēnhǎidǐqīxìngyúlèizhīfāyùchuízhíqiānxǐ |
_version_ |
1719127177987883008 |