Convergence of Calderon formula for two parameters

碩士 === 國立東華大學 === 應用數學系 === 103 === The Calderón reproducing formula is the most important in the study of harmonic analysis, which has the same the property as the one of approximate identity in many special function spaces. In this thesis, we use the idea of separation variables and atomic decompo...

Full description

Bibliographic Details
Main Authors: Jiang-Wei Huang, 黃建偉
Other Authors: Kun-Chuan Wang
Format: Others
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/34498873778151570862
id ndltd-TW-103NDHU5507004
record_format oai_dc
spelling ndltd-TW-103NDHU55070042017-04-23T04:27:28Z http://ndltd.ncl.edu.tw/handle/34498873778151570862 Convergence of Calderon formula for two parameters 雙參數Calderón 再生公式的收斂性 Jiang-Wei Huang 黃建偉 碩士 國立東華大學 應用數學系 103 The Calderón reproducing formula is the most important in the study of harmonic analysis, which has the same the property as the one of approximate identity in many special function spaces. In this thesis, we use the idea of separation variables and atomic decomposition to extend single parameter into two-parameters and discuss the convergence of Calderón reproducing formula of two-parameters in Lp(Rn1 Rn2), in S(Rn1 Rn2) and in S ′(Rn1 Rn2). Finally, we define Besov spaces in two-parameter and show that these spaces are well-defined by Plancherel-Pôlya inequalities. Consequently, we obtain the norm equivalence between Besov spaces and corresponding sequence space in two-parameter. Also we show the convergence of Calderón reproducing formula in Besov space. Kun-Chuan Wang 王昆湶 2015 學位論文 ; thesis 41
collection NDLTD
format Others
sources NDLTD
description 碩士 === 國立東華大學 === 應用數學系 === 103 === The Calderón reproducing formula is the most important in the study of harmonic analysis, which has the same the property as the one of approximate identity in many special function spaces. In this thesis, we use the idea of separation variables and atomic decomposition to extend single parameter into two-parameters and discuss the convergence of Calderón reproducing formula of two-parameters in Lp(Rn1 Rn2), in S(Rn1 Rn2) and in S ′(Rn1 Rn2). Finally, we define Besov spaces in two-parameter and show that these spaces are well-defined by Plancherel-Pôlya inequalities. Consequently, we obtain the norm equivalence between Besov spaces and corresponding sequence space in two-parameter. Also we show the convergence of Calderón reproducing formula in Besov space.
author2 Kun-Chuan Wang
author_facet Kun-Chuan Wang
Jiang-Wei Huang
黃建偉
author Jiang-Wei Huang
黃建偉
spellingShingle Jiang-Wei Huang
黃建偉
Convergence of Calderon formula for two parameters
author_sort Jiang-Wei Huang
title Convergence of Calderon formula for two parameters
title_short Convergence of Calderon formula for two parameters
title_full Convergence of Calderon formula for two parameters
title_fullStr Convergence of Calderon formula for two parameters
title_full_unstemmed Convergence of Calderon formula for two parameters
title_sort convergence of calderon formula for two parameters
publishDate 2015
url http://ndltd.ncl.edu.tw/handle/34498873778151570862
work_keys_str_mv AT jiangweihuang convergenceofcalderonformulafortwoparameters
AT huángjiànwěi convergenceofcalderonformulafortwoparameters
AT jiangweihuang shuāngcānshùcalderonzàishēnggōngshìdeshōuliǎnxìng
AT huángjiànwěi shuāngcānshùcalderonzàishēnggōngshìdeshōuliǎnxìng
_version_ 1718443358905434112