Convergence of Calderon formula for two parameters
碩士 === 國立東華大學 === 應用數學系 === 103 === The Calderón reproducing formula is the most important in the study of harmonic analysis, which has the same the property as the one of approximate identity in many special function spaces. In this thesis, we use the idea of separation variables and atomic decompo...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Published: |
2015
|
Online Access: | http://ndltd.ncl.edu.tw/handle/34498873778151570862 |
id |
ndltd-TW-103NDHU5507004 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-103NDHU55070042017-04-23T04:27:28Z http://ndltd.ncl.edu.tw/handle/34498873778151570862 Convergence of Calderon formula for two parameters 雙參數Calderón 再生公式的收斂性 Jiang-Wei Huang 黃建偉 碩士 國立東華大學 應用數學系 103 The Calderón reproducing formula is the most important in the study of harmonic analysis, which has the same the property as the one of approximate identity in many special function spaces. In this thesis, we use the idea of separation variables and atomic decomposition to extend single parameter into two-parameters and discuss the convergence of Calderón reproducing formula of two-parameters in Lp(Rn1 Rn2), in S(Rn1 Rn2) and in S ′(Rn1 Rn2). Finally, we define Besov spaces in two-parameter and show that these spaces are well-defined by Plancherel-Pôlya inequalities. Consequently, we obtain the norm equivalence between Besov spaces and corresponding sequence space in two-parameter. Also we show the convergence of Calderón reproducing formula in Besov space. Kun-Chuan Wang 王昆湶 2015 學位論文 ; thesis 41 |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立東華大學 === 應用數學系 === 103 === The Calderón reproducing formula is the most important in the
study of harmonic analysis, which has the same the property as the
one of approximate identity in many special function spaces. In this
thesis, we use the idea of separation variables and atomic decomposition
to extend single parameter into two-parameters and discuss the
convergence of Calderón reproducing formula of two-parameters in
Lp(Rn1 Rn2), in S(Rn1 Rn2) and in S
′(Rn1 Rn2). Finally, we
define Besov spaces in two-parameter and show that these spaces are
well-defined by Plancherel-Pôlya inequalities. Consequently, we obtain
the norm equivalence between Besov spaces and corresponding
sequence space in two-parameter. Also we show the convergence of
Calderón reproducing formula in Besov space.
|
author2 |
Kun-Chuan Wang |
author_facet |
Kun-Chuan Wang Jiang-Wei Huang 黃建偉 |
author |
Jiang-Wei Huang 黃建偉 |
spellingShingle |
Jiang-Wei Huang 黃建偉 Convergence of Calderon formula for two parameters |
author_sort |
Jiang-Wei Huang |
title |
Convergence of Calderon formula for two parameters |
title_short |
Convergence of Calderon formula for two parameters |
title_full |
Convergence of Calderon formula for two parameters |
title_fullStr |
Convergence of Calderon formula for two parameters |
title_full_unstemmed |
Convergence of Calderon formula for two parameters |
title_sort |
convergence of calderon formula for two parameters |
publishDate |
2015 |
url |
http://ndltd.ncl.edu.tw/handle/34498873778151570862 |
work_keys_str_mv |
AT jiangweihuang convergenceofcalderonformulafortwoparameters AT huángjiànwěi convergenceofcalderonformulafortwoparameters AT jiangweihuang shuāngcānshùcalderonzàishēnggōngshìdeshōuliǎnxìng AT huángjiànwěi shuāngcānshùcalderonzàishēnggōngshìdeshōuliǎnxìng |
_version_ |
1718443358905434112 |