Summary: | 博士 === 國立東華大學 === 生命科學系 === 103 === Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine has been overexpressed in many types of tumors and plays an important role in number of cell signaling pathways including cell migration, proliferation, viability, and cell survival. This study was aimed to identify the novel and specific inhibitors from natural compounds via molecular docking of FAK (Y397) and investigate the underlying mechanism of action. The 3D structure of the FAK (PDB ID: 2AL6) was used for docking 107 Natural compounds. Based on their high affinity and energy interaction, top two compounds Antroquinonol from Antrodia camphorata and 16-hydroxy-cleroda-3,13-dien-16,15-olide (HCD) from Polyalthia longifolia were selected and further validated with C6 Glioma and N18 Neuroblastoma cell lines. Protein (2AL6) - ligands interaction analysis indicated that H-bond with residues Arg 86 and Arg 125. These compounds showed a potential effect on cell viability by MTT assay; in contrast cell cycle analysis showed cell arrest in subG1 and G0-G1 phase, respectively and further induction of apoptosis was confirmed by TUNEL assay. Atomic Force Microscopy data depicted that the formation of filopodia on intracellular surface decreased in treated cells as compared to the control. In addition, both compounds inhibited the activity of MMP 2 and 9 using Zymography. The protein levels of FAK, pFAK, Rac1 and cdc 42 were decreased, which are the key regulators for the formation of filopodia and cell migration. Further, both the compounds regulate the expression of epithelial mesenchymal transition (EMT) proteins. HCD and antroquinonol induce the autophagy through ROS mechanism. Further, HCD conjugated with Cu-MSN showed a controlled drug release and reduced the tumor growth of glioma. Taken together, this study suggests that Antroquinonol and 16-hydroxy-cleroda-3,13-dine-16,15-olide could be a potential inhibitor of FAK for anti-tumorigenesis and anti-metastasis.
|