Using negative binomial model to make inference about bioequivalence
碩士 === 國立中央大學 === 統計研究所 === 103 === Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2015
|
Online Access: | http://ndltd.ncl.edu.tw/handle/qv9fk4 |
id |
ndltd-TW-103NCU05337011 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-103NCU053370112019-05-15T22:08:46Z http://ndltd.ncl.edu.tw/handle/qv9fk4 Using negative binomial model to make inference about bioequivalence 以二元負二項模型推論生物對等性 Hou,Yu-Ru 侯玉汝 碩士 國立中央大學 統計研究所 103 Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The number of parameters in bivariate normal model makes it less convenient to make inference about bioequivalence. We propose using the bivariate negative binomial model to test for bioequivalence. We can convert the bivariate negative binomial likelihood to become robust to accommodate general pharmacokinetic data whose distribution might be less understood. Tsung-Shan Tsou 鄒宗山 2015 學位論文 ; thesis 78 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中央大學 === 統計研究所 === 103 === Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The number of parameters in bivariate normal model makes it less convenient to make inference about bioequivalence. We propose using the bivariate negative binomial model to test for bioequivalence. We can convert the bivariate negative binomial likelihood to become robust to accommodate general pharmacokinetic data whose distribution might be less understood.
|
author2 |
Tsung-Shan Tsou |
author_facet |
Tsung-Shan Tsou Hou,Yu-Ru 侯玉汝 |
author |
Hou,Yu-Ru 侯玉汝 |
spellingShingle |
Hou,Yu-Ru 侯玉汝 Using negative binomial model to make inference about bioequivalence |
author_sort |
Hou,Yu-Ru |
title |
Using negative binomial model to make inference about bioequivalence |
title_short |
Using negative binomial model to make inference about bioequivalence |
title_full |
Using negative binomial model to make inference about bioequivalence |
title_fullStr |
Using negative binomial model to make inference about bioequivalence |
title_full_unstemmed |
Using negative binomial model to make inference about bioequivalence |
title_sort |
using negative binomial model to make inference about bioequivalence |
publishDate |
2015 |
url |
http://ndltd.ncl.edu.tw/handle/qv9fk4 |
work_keys_str_mv |
AT houyuru usingnegativebinomialmodeltomakeinferenceaboutbioequivalence AT hóuyùrǔ usingnegativebinomialmodeltomakeinferenceaboutbioequivalence AT houyuru yǐèryuánfùèrxiàngmóxíngtuīlùnshēngwùduìděngxìng AT hóuyùrǔ yǐèryuánfùèrxiàngmóxíngtuīlùnshēngwùduìděngxìng |
_version_ |
1719126426184056832 |