Using negative binomial model to make inference about bioequivalence

碩士 === 國立中央大學 === 統計研究所 === 103 === Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The...

Full description

Bibliographic Details
Main Authors: Hou,Yu-Ru, 侯玉汝
Other Authors: Tsung-Shan Tsou
Format: Others
Language:zh-TW
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/qv9fk4
id ndltd-TW-103NCU05337011
record_format oai_dc
spelling ndltd-TW-103NCU053370112019-05-15T22:08:46Z http://ndltd.ncl.edu.tw/handle/qv9fk4 Using negative binomial model to make inference about bioequivalence 以二元負二項模型推論生物對等性 Hou,Yu-Ru 侯玉汝 碩士 國立中央大學 統計研究所 103 Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The number of parameters in bivariate normal model makes it less convenient to make inference about bioequivalence. We propose using the bivariate negative binomial model to test for bioequivalence. We can convert the bivariate negative binomial likelihood to become robust to accommodate general pharmacokinetic data whose distribution might be less understood. Tsung-Shan Tsou 鄒宗山 2015 學位論文 ; thesis 78 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立中央大學 === 統計研究所 === 103 === Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The number of parameters in bivariate normal model makes it less convenient to make inference about bioequivalence. We propose using the bivariate negative binomial model to test for bioequivalence. We can convert the bivariate negative binomial likelihood to become robust to accommodate general pharmacokinetic data whose distribution might be less understood.
author2 Tsung-Shan Tsou
author_facet Tsung-Shan Tsou
Hou,Yu-Ru
侯玉汝
author Hou,Yu-Ru
侯玉汝
spellingShingle Hou,Yu-Ru
侯玉汝
Using negative binomial model to make inference about bioequivalence
author_sort Hou,Yu-Ru
title Using negative binomial model to make inference about bioequivalence
title_short Using negative binomial model to make inference about bioequivalence
title_full Using negative binomial model to make inference about bioequivalence
title_fullStr Using negative binomial model to make inference about bioequivalence
title_full_unstemmed Using negative binomial model to make inference about bioequivalence
title_sort using negative binomial model to make inference about bioequivalence
publishDate 2015
url http://ndltd.ncl.edu.tw/handle/qv9fk4
work_keys_str_mv AT houyuru usingnegativebinomialmodeltomakeinferenceaboutbioequivalence
AT hóuyùrǔ usingnegativebinomialmodeltomakeinferenceaboutbioequivalence
AT houyuru yǐèryuánfùèrxiàngmóxíngtuīlùnshēngwùduìděngxìng
AT hóuyùrǔ yǐèryuánfùèrxiàngmóxíngtuīlùnshēngwùduìděngxìng
_version_ 1719126426184056832