Cultivation and Analysis of Microalgae in Microfluidic Bioreactor

碩士 === 國立成功大學 === 化學工程學系 === 103 === This study presents the cultivation and monitoring of Chlorella vulgaris and Scenedesmus abundans GH-D11 on a microfluidic platform, which is compatible to commercially and readily available plate readers. The properties of cell, including microalgae cell density...

Full description

Bibliographic Details
Main Authors: Yi-JiaChai, 蔡翊家
Other Authors: Hsiang-Yu Wang
Format: Others
Language:zh-TW
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/57607444442968889375
Description
Summary:碩士 === 國立成功大學 === 化學工程學系 === 103 === This study presents the cultivation and monitoring of Chlorella vulgaris and Scenedesmus abundans GH-D11 on a microfluidic platform, which is compatible to commercially and readily available plate readers. The properties of cell, including microalgae cell density (O.D.682) and total pigment (O.D.440), were determined by absorbance read by a plate reader during cultivation. Conventional screening methods for optimization of microalgae culture are time-consuming and complicated. Therefore, this research aims for developing prompt culture and rapid quantification of microalgae cellular contents using microfluidic bioreactor. In this study, the effects of carbon source and electric field on microalgae cultivation are investigated. The results show microalgae were cultivated better, indicated by more abundant pigment and cell density, by applying suitable carbon source and electric field. Chlorella vulgaris had high cell density (O.D.682=2.57, biomass = 2.71 g/L) and abundant pigment (O.D.440=2.71) after 120 hour of cultivation with sodium acetate as carbon source and 10 V/cm electric field. Scenedesmus abundans had the absorbance value of 2.25 and 1.92 in pigment and cell density after 120 hour of cultivation with glucose and 10 V/cm electric field and the biomass was 2.23 g/L. In summary, our microfluidic platform provides not only fast and convenient way to determining microalgae cellular contents but also considerably decreases the amount of microalgae cell culture size for screening cultivation parameters.