Decoration and Characterization of Bi2S3-based Nanoparticles on Reduced Graphene Oxide

碩士 === 國立成功大學 === 化學工程學系 === 103 === As a non-toxic material and abundant resource in the face of the earth, bismuth sulfide was studied extensively in many fields. In this study, rGO/Bi2S3 was synthesized using various methods to observe its morphology and properties. The methods used to synthesize...

Full description

Bibliographic Details
Main Authors: AntonSetiono, 張涪亮
Other Authors: Dong-Hwang Chen
Format: Others
Language:en_US
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/8bcc6f
Description
Summary:碩士 === 國立成功大學 === 化學工程學系 === 103 === As a non-toxic material and abundant resource in the face of the earth, bismuth sulfide was studied extensively in many fields. In this study, rGO/Bi2S3 was synthesized using various methods to observe its morphology and properties. The methods used to synthesized Bi2S3 are hydrothermal and solvothermal methods. Both of them led to nanorod structured Bi2S3 with a very large size and heavy agglomeration. In the presence of graphene oxide, there are some changes in the morphology of Bi2S3, which have shorter rod size and lower agglomeration degree. Parameter changes was done to see its effect on Bi2S3 and rGO/Bi2S3 morphology, these parameters are, precursor concentration, synthesis time, GO content, solvents, the presence of capping agent, and the presence of other metal sulfide. The other metal sulfide used for this experiment is silver sulfide (Ag2S), which also synthesized using hydrothermal method. The combination of two metal sulfides with rGO, which is rGO/Bi2S3-Ag2S, was synthesized using 1-step hydrothermal and 2-step hydrothermal method. From these two methods the morphology of product produced was different and has different crystal structure. The photocatalytic properties of synthesized nanocomposites was observed by photodegradation of methylene blue dye under the irradiation of light from 300 W xenon lamp and also using various photocatalytic parameters. From the test results, the photocatalytic performance of product synthesized was not good for practical use, thus this material is not suitable for photocatalyst but for other applications such as supercapacitor and electrochemical sensor.