Using Nakagami MRF mode to deal with ultrasound data

碩士 === 銘傳大學 === 應用統計資訊學系碩士班 === 103 === Recent research on ultrasound image, in addition to the traditional ultrasound B-mode imaging, has been expanded to the Nakagami parameter images. To investigate the parameter estimates, Markov Random Field is a main focus of research on the selection of ultra...

Full description

Bibliographic Details
Main Authors: Yu-Ting Lin, 林昱廷
Other Authors: Jen-Jen Lin
Format: Others
Language:zh-TW
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/89913926892678476777
id ndltd-TW-103MCU05337007
record_format oai_dc
spelling ndltd-TW-103MCU053370072017-01-22T04:14:59Z http://ndltd.ncl.edu.tw/handle/89913926892678476777 Using Nakagami MRF mode to deal with ultrasound data 利用Nakagami MRF模式處理超音波影像資料 Yu-Ting Lin 林昱廷 碩士 銘傳大學 應用統計資訊學系碩士班 103 Recent research on ultrasound image, in addition to the traditional ultrasound B-mode imaging, has been expanded to the Nakagami parameter images. To investigate the parameter estimates, Markov Random Field is a main focus of research on the selection of ultrasound image point. In this study, we used Nakagami-MRF model and the least absolute shrinkage and selection operator (LASSO) to estimate the parameter value m. We use the simulated data of Rayleigh distribution in LASSO estimation to estimate the value of m. The procedure of estimation contains huge inverse matrix operations. We used two method (original matrix, partitioned matrix). The result of partitioned matrix method can solve the problem of inverse matrix operations and obtain the value of m which is close to the theoretical value of Rayleigh distribution. Jen-Jen Lin Jung-Yu Cheng 林真真 鄭榕鈺 2015 學位論文 ; thesis 53 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 銘傳大學 === 應用統計資訊學系碩士班 === 103 === Recent research on ultrasound image, in addition to the traditional ultrasound B-mode imaging, has been expanded to the Nakagami parameter images. To investigate the parameter estimates, Markov Random Field is a main focus of research on the selection of ultrasound image point. In this study, we used Nakagami-MRF model and the least absolute shrinkage and selection operator (LASSO) to estimate the parameter value m. We use the simulated data of Rayleigh distribution in LASSO estimation to estimate the value of m. The procedure of estimation contains huge inverse matrix operations. We used two method (original matrix, partitioned matrix). The result of partitioned matrix method can solve the problem of inverse matrix operations and obtain the value of m which is close to the theoretical value of Rayleigh distribution.
author2 Jen-Jen Lin
author_facet Jen-Jen Lin
Yu-Ting Lin
林昱廷
author Yu-Ting Lin
林昱廷
spellingShingle Yu-Ting Lin
林昱廷
Using Nakagami MRF mode to deal with ultrasound data
author_sort Yu-Ting Lin
title Using Nakagami MRF mode to deal with ultrasound data
title_short Using Nakagami MRF mode to deal with ultrasound data
title_full Using Nakagami MRF mode to deal with ultrasound data
title_fullStr Using Nakagami MRF mode to deal with ultrasound data
title_full_unstemmed Using Nakagami MRF mode to deal with ultrasound data
title_sort using nakagami mrf mode to deal with ultrasound data
publishDate 2015
url http://ndltd.ncl.edu.tw/handle/89913926892678476777
work_keys_str_mv AT yutinglin usingnakagamimrfmodetodealwithultrasounddata
AT línyùtíng usingnakagamimrfmodetodealwithultrasounddata
AT yutinglin lìyòngnakagamimrfmóshìchùlǐchāoyīnbōyǐngxiàngzīliào
AT línyùtíng lìyòngnakagamimrfmóshìchùlǐchāoyīnbōyǐngxiàngzīliào
_version_ 1718409879464443904