Homologies of Path Complexes

碩士 === 國立臺灣大學 === 數學研究所 === 102 === The main content of this thesis is a reorganization of [2], [3], and [10]. We introduce the notion of path homology and discuss some applications on digraphs; finally we use the method to prove Brouwer’s fixed point theorem in an alternative way....

Full description

Bibliographic Details
Main Authors: Chang-Han Chueh, 闕昌漢
Other Authors: 王藹農
Format: Others
Language:en_US
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/60833471432066785927
id ndltd-TW-102NTU05479026
record_format oai_dc
spelling ndltd-TW-102NTU054790262016-03-09T04:24:20Z http://ndltd.ncl.edu.tw/handle/60833471432066785927 Homologies of Path Complexes 路徑的同調群 Chang-Han Chueh 闕昌漢 碩士 國立臺灣大學 數學研究所 102 The main content of this thesis is a reorganization of [2], [3], and [10]. We introduce the notion of path homology and discuss some applications on digraphs; finally we use the method to prove Brouwer’s fixed point theorem in an alternative way. 王藹農 2014 學位論文 ; thesis 29 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立臺灣大學 === 數學研究所 === 102 === The main content of this thesis is a reorganization of [2], [3], and [10]. We introduce the notion of path homology and discuss some applications on digraphs; finally we use the method to prove Brouwer’s fixed point theorem in an alternative way.
author2 王藹農
author_facet 王藹農
Chang-Han Chueh
闕昌漢
author Chang-Han Chueh
闕昌漢
spellingShingle Chang-Han Chueh
闕昌漢
Homologies of Path Complexes
author_sort Chang-Han Chueh
title Homologies of Path Complexes
title_short Homologies of Path Complexes
title_full Homologies of Path Complexes
title_fullStr Homologies of Path Complexes
title_full_unstemmed Homologies of Path Complexes
title_sort homologies of path complexes
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/60833471432066785927
work_keys_str_mv AT changhanchueh homologiesofpathcomplexes
AT quèchānghàn homologiesofpathcomplexes
AT changhanchueh lùjìngdetóngdiàoqún
AT quèchānghàn lùjìngdetóngdiàoqún
_version_ 1718201080498618368