The Application of Multiscale Entropy in Stock Index Analysis

碩士 === 國立臺北大學 === 統計學系 === 102 === The approaches of correlation coefficient, unit root test (such as DF test & ADF test), structural change test (such as Chow test), autoregressive conditional heteroscedasticity (ARCH), vector autoregression model (VAR model) or Johansen cointegration test, etc...

Full description

Bibliographic Details
Main Authors: Yi-Ju Huang, 黃檍如
Other Authors: Tsair-Chuan Lin
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/44811537101104675515
id ndltd-TW-102NTPU0337021
record_format oai_dc
spelling ndltd-TW-102NTPU03370212016-03-11T04:13:33Z http://ndltd.ncl.edu.tw/handle/44811537101104675515 The Application of Multiscale Entropy in Stock Index Analysis 多尺度熵應用於股價指數分析之探討 Yi-Ju Huang 黃檍如 碩士 國立臺北大學 統計學系 102 The approaches of correlation coefficient, unit root test (such as DF test & ADF test), structural change test (such as Chow test), autoregressive conditional heteroscedasticity (ARCH), vector autoregression model (VAR model) or Johansen cointegration test, etc. are frequently used to test structural changes of stock market indices. However, there are some limitations when using these tools. The literature has found that the multiscale entropy (MSE) can be applied to time series to investigate the issue of change points. Based on this, this paper aimed to apply the multiscale entropy to the stock index of Taiwan Weighted Index (TWII), Hang Seng Index (HSI), Dow Jones Industrial Average Index (DJI), NASDAQ, Financial Times Stock Exchange Index (FTSE) and Cotation Assistée en Continu 40 (CAC40) to test their structural changes and determine the possible time of the change points. From the real data study, we find all of these stock indices have a common structure change point around September of 2008. Tsair-Chuan Lin 林財川 2014 學位論文 ; thesis 70 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺北大學 === 統計學系 === 102 === The approaches of correlation coefficient, unit root test (such as DF test & ADF test), structural change test (such as Chow test), autoregressive conditional heteroscedasticity (ARCH), vector autoregression model (VAR model) or Johansen cointegration test, etc. are frequently used to test structural changes of stock market indices. However, there are some limitations when using these tools. The literature has found that the multiscale entropy (MSE) can be applied to time series to investigate the issue of change points. Based on this, this paper aimed to apply the multiscale entropy to the stock index of Taiwan Weighted Index (TWII), Hang Seng Index (HSI), Dow Jones Industrial Average Index (DJI), NASDAQ, Financial Times Stock Exchange Index (FTSE) and Cotation Assistée en Continu 40 (CAC40) to test their structural changes and determine the possible time of the change points. From the real data study, we find all of these stock indices have a common structure change point around September of 2008.
author2 Tsair-Chuan Lin
author_facet Tsair-Chuan Lin
Yi-Ju Huang
黃檍如
author Yi-Ju Huang
黃檍如
spellingShingle Yi-Ju Huang
黃檍如
The Application of Multiscale Entropy in Stock Index Analysis
author_sort Yi-Ju Huang
title The Application of Multiscale Entropy in Stock Index Analysis
title_short The Application of Multiscale Entropy in Stock Index Analysis
title_full The Application of Multiscale Entropy in Stock Index Analysis
title_fullStr The Application of Multiscale Entropy in Stock Index Analysis
title_full_unstemmed The Application of Multiscale Entropy in Stock Index Analysis
title_sort application of multiscale entropy in stock index analysis
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/44811537101104675515
work_keys_str_mv AT yijuhuang theapplicationofmultiscaleentropyinstockindexanalysis
AT huángyìrú theapplicationofmultiscaleentropyinstockindexanalysis
AT yijuhuang duōchǐdùshāngyīngyòngyúgǔjiàzhǐshùfēnxīzhītàntǎo
AT huángyìrú duōchǐdùshāngyīngyòngyúgǔjiàzhǐshùfēnxīzhītàntǎo
AT yijuhuang applicationofmultiscaleentropyinstockindexanalysis
AT huángyìrú applicationofmultiscaleentropyinstockindexanalysis
_version_ 1718203540943405056